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Abstract—The spectrogram is a common feature of frequency
domain speech enhancement (SE). It can be divided into
wideband and narrowband according to the resolution of the
spectrogram, which is controlled by the length of framing
time. Although narrowband and wideband spectrograms have
their own spectral characteristics, SE systems conventionally
utilize single narrow bandwidth spectrograms. In this paper,
we propose an SE system that simultaneously utilizes multiple
bandwidth spectral information, more specifically, augments the
wider bandwidth (16ms and 8ms) spectrograms as auxiliary
information. Multiple bandwidth information fusion is imple-
mented in the encoder in two ways: fusion only in the last layer
(MI-F) and fusion layer by layer (MI-L). Experiments using
the VB dataset show that different bandwidth spectrograms can
provide supplementary information, which provides more than
0.1 PESQ improvement. The embedding dimension affects the
position of the fusion position: MI-F requires less embedding
dimension, while MI-L requires a larger dimension and more
varied bandwidth. Moreover, the spectrogram which differs
more from the main enhancement spectrogram provides better
auxiliary information.
Index Terms: speech enhancement, narrowband spectrogram,
wideband spectrogram

I. INTRODUCTION

Noise has a great negative effect on speech signal process-
ing [1]. As speech applications become popular, it is necessary
to improve their performance in noisy scenarios [2]. Speech
enhancement (SE) [2] is dedicated to recovering clean speech
from noisy speech signals. Traditional SE methods [3], [4],
[5], [6] are based on some established prior assumptions. In
addition, these methods rely on the parameter setting and
manual tuning. With the development of deep learning [7],
many studies show that deep learning-based SE [8], [9], [10],
[11] performs better than the traditional methods. Among
these deep learning-based SE methods [12], [13], [14], [15],
the frequency-domain enhancement methods are still widely
used.

Spectrogram is a common feature for frequency-domain
SE [16], [17], [18]. According to the resolution of the
spectrogram, which is controlled by the length of framing
time, it can be divided into wideband and narrowband [19].
The two kinds of spectrograms are much different and have
their own characteristics [19]. Fig. 1 shows the spectrograms

Fig. 1. Spectrogram examples extracted with different window lengths: (a)
32ms narrowband spectrogram; (b) 16ms wideband spectrogram; (c) 8ms
wideband spectrogram.

extracted by 8ms, 16ms, and 32ms length of framing time.
Because of the short time period of each frame, wideband
spectrograms have better time resolutions and can capture the
rapid amplitude changes [20]. In the wideband spectrograms,
the formant information of speech can be clearly seen, but the
harmonic frequencies cannot be seen [20]. On the other hand,
the narrowband spectrograms have longer frame lengths. It is
too long to capture the rapid changes in amplitude [20], but
have better spectral resolutions. It is easy to see the position
of the harmonics in the narrowband spectrograms, but difficult
to spot the position of the formant [20].

Although there is information complementarity between
spectrograms with different bandwidths, the current SE sys-
tem conventionally uses spectrograms extracted by a single
window length as input and output. Some related works use
convolutional neural network to extract multi-scale features
[21], [22], [23] instead of multiple bandwidth spectrogram
inputs.

In this paper, we design a multiple input SE system by
incorporating 8ms and 16ms bandwidth spectrogram to the
32ms bandwidth spectrogram enhancement system. Spectro-



Fig. 2. Flowchart of (a) CRN; (b) CRN with Linear Blocks; (c) Multi-input Final Fusion (MI-F); (d) Multi-input Layer-by-layer Fusion (MI-L); (e) Structure
of Conv Block; (f) Structure of DeConv Block; (g) Structure of Linear Block.

grams of different bandwidths are processed by multiple
convolution blocks separately, and they are fused in the
encoder. The difference between the two proposed methods is
in the fusion position. More specifically, different bandwidth
spectrograms are fused only in the last encoder layer (MI-F)
or layer by layer (MI-L). We propose to use Linear Blocks
to fuse different information. For MI-F, one Linear Block is
only added to the last encoder layer; for MI-L, Linear Blocks
are added after each encoder layer.

The rest of this paper is organized as follows. Section 2 de-
scribes the baseline model. Section 3 introduces our proposed
methods. Section 4 presents the dataset, experimental settings,
and experimental results. Section 5 gives the conclusion of
this paper and future work.

II. BASELINE MODEL

We choose Convolutional Recurrent Neural Network [24]
(CRN, shown in Fig. 2–(a)), which performs well in
frequency-domain SE as a baseline system. It contains an
encoder:

e = E(x) (1)

where x and e are the noisy input spectrogram and the output
of the encoder, respectively. E is the encoder of CRN, which
contains several Conv Blocks (shown in Fig. 2–(e)). The
output of the encoder is fed into the LSTM layers:

l = L(e) (2)
where l is the output of the LSTM layers. Then, l is input to
the decoder:

m = D(l) (3)

where m is the output of decoder. D is the decoder of CRN,
which contains several DeConv Blocks (shown in Fig. 2–(f)).

In this paper, we adopt a masking-based SE system:
ô = m ∗ x (4)

where ô is the final enhanced spectrogram. When training the
network, we use the signal approximation (SA) [25], [26].
The loss function of training is as follow:

LSA =
1

tf

∑
t,f

||ô− c||2F , (5)

where t, f represent time and frequency respectively, and c
is the clean spectrogram.

III. PROPOSED METHOD

In this paper, we utilize supplementary information of dif-
ferent bandwidth spectrograms. The proposed method inputs
multi-bandwidth spectrograms simultaneously.

A. Structure of Neural Network

The flowcharts of the proposed methods are shown in
Fig. 2–(c) and Fig. 2–(d). Both of Multi-input Final Fu-
sion (MI-F) and Multi-input Layer-by-layer Fusion (MI-L)
have an encoder, LSTM layers and a decoder. The network
structure in front of the LSTM layers comprises the encoder.
We use a Linear Block (shown in Fig. 2–(g)) to fuse the
information of multiple bandwidth spectrograms:

h = LB(fm32, fm16, fm8) (6)
where the fm32, fm16, fm8 are feature maps of 32ms, 16ms,
and 8ms bandwidth spectrograms respectively. LB represents
the Linear Block, and h is the output of Linear Block. h and
fm32 have the same feature dimension, which is realized by
the linear layer of the Linear Block. For MI-F, Linear Block is



Fig. 3. 16ms and 8ms features aligned with 32ms features for framing

only added to the last layer of the encoder. For MI-L, Linear
Blocks are used to fuse the multiple bandwidth information
after each Conv Block in the encoder. The residual connection
is used between the corresponding encoder layer and the
decoder layer. For layers without a Linear Block, we directly
input the output of the Conv Block into the corresponding
layer of the decoder. When there is a Linear Block, we input
the output of the Linear Block to the corresponding layer
of the decoder. The proposed network can be expressed as
follows:

m = NMI−F (fm32, fm16, fm8), (7)
or

m = NMI−L(fm32, fm16, fm8), (8)

where NMI−F and NMI−L are networks of proposed MI-
F and MI-L methods. The final enhanced spectrogram can be
obtained by Eq. (4).

B. Processing of Input Features

Spectrograms extracted with different time periods have
different information in the same time frame. With different
lengths of framing time and frame shift, the frame number
and information of each frame are also different. In order to
ensure that the corresponding frames of different bandwidth
spectrograms are aligned when input to the network, we
concatenate adjacent frames of 16ms and 8ms spectrograms.
This process is applied after the Conv Block and before
the Linear layer. In this work, the frame shift was 50%.
One frame of 32ms spectrogram corresponds to adjacent 3
frames of 16ms spectrogram; one frame of 32ms spectrogram
corresponds to adjacent 7 frames of 8ms spectrogram. In
addition, to align the frames, the start and end time of the
32ms frame must be the same as that of 16ms/8ms after
framing. This means that the i-th 32ms frame corresponds
to the framing centered on the 2i-th 16ms frame and the
corresponding framing centered on the 4i-th 8ms frame. The

Fig. 4. Diagram of the frame concatenation.

corresponding relationship is shown in Fig. 3. The diagram
of the frame concatenation is shown in Fig. 4.

C. Training of the Network

The network takes SA masking as a learning target which
calculates the loss with Eq. (5). The output of the network
is the mask m for the 32ms spectrogram, which is used for
enhancement in Eq. (4)

IV. EXPERIMENTS

We used a public VB dataset1, which is synthesized from
the Voice Bank dataset and the Demand dataset. It contains
training and test sets. We selected all data of two speak-
ers (one male and one female) as the validation set. This
will ensure that the test speakers were unseen. Finally, the
training set contained 10,705 utterances, and the validation
set contained 867 utterances. We used the best-performing
model under the validation set for evaluation. The test set
contained 824 utterances in total. The sampling rate of the
original dataset is 48k Hz. We downsampled the audio to 16k
Hz in our experiments. For feature extraction, we used the
following parameters to extract 32ms spectrogram: window
length was 512; hop length was 256; short-time Fourier
transform points was 512. For 16ms/8ms spectrograms, these
hyperparameters were set to 256/128, 128/64, 256/128. We
used the magnitude of the spectrogram as both input and
output of the experiments.

All models contain a 5-layer Conv Block encoder and
a 5-layer DeConv Block decoder. The parameters of the
convolutional layer in the Conv Block are as follows: kernel
size of (3,2), stride of (2, 1) and padding of (0, 1). The
parameters of the deconvolutional layer in the DeConv Block
are as follows: kernel size of (3,2), stride of (2, 1) and padding
of (0, 0) except that (1, 0) was used for the 4th layer; the
activation function of the last layer is ReLU, and the other
layers are ELU. The numbers of feature maps in the encoder

1https://datashare.ed.ac.uk/handle/10283/2791



TABLE I
RESULTS OF DIFFERENT ENHANCEMENT SYSTEMS: 8MS (16MS, 32MS)
FEAT. REPRESENTS THAT 8MS (16MS, 32MS) FEATURE AS INPUT AND

OUTPUT FEATURE; 8MS (16MS) AUX. REPRESENTS THAT THE AUXILIARY
FEATURE IS 8MS (16MS); 8, 16MS AUX. REPRESENTS THAT THE

AUXILIARY FEATURES ARE BOTH 8MS AND 16MS SPECTROGRAMS.

SYSTEMS SIG BAK OVRL PESQ
noisy (original) 3.35 2.44 2.63 1.970

CRN

8ms feat. 3.61 2.92 2.92 2.264
16ms feat. 3.62 3.07 3.02 2.481
32ms feat. 3.51 2.98 3.02 2.563

+ linear 3.56 3.14 3.01 2.502

MI-F
8ms aux. 3.69 3.25 3.16 2.657
16ms aux. 3.61 3.14 3.07 2.568
8, 16ms aux. 3.54 3.20 3.03 2.563

MI-L
8ms aux. 3.51 3.19 3.03 2.607
16ms aux. 3.71 3.18 3.13 2.593
8, 16ms aux. 3.81 3.22 3.22 2.662

was 1 → 16 → 32 → 64 → 128 → 256, and the numbers of
feature map in the decoder were 512 → 256 → 128 → 64
→ 32 → 1. A Linear Block contained one linear layer.

For baseline methods, we tried 32ms, 16ms, and 8ms
spectrogram as input features for CRN. With different input
feature dimensions, the dimensions of multiple bandwidth
spectrograms will also have different dimensions after the
convolutional processing, which will affect the number of
nodes in the LSTM layers. For the input of 32ms spectrogram
1,792 LSTM layer nodes were used; 768 nodes for 16ms
spectrogram and 256 nodes for 8ms spectrogram. All models
had two LSTM layers. In order to make a fair comparison by
considering the effect of the Linear Block, we add Linear
Blocks after each Conv Block for the 32ms spectrogram
baseline (+ linear), which is shown in Fig. 2–(b).

To evaluate the performance of each method, we used SIG
(values range from 1 to 5, higher value indicates clearer
and more natural with less degradation)[27], BAK (values
range from 1 to 5, higher value indicates less intrusive
of background noise)[27], OVRL ([1=bad, 2=poor, 3=fair,
4=good, 5=excellent])[27] and the perceptual evaluation of
speech quality (PESQ) [27], [28].

A. Effect of Different Bandwidth

Table I shows the results of different SE systems. SE
systems were greatly affected by the bandwidth of input
and output features. Compared with the “16ms” and “8ms”
systems, the “32ms” system obtains the best PESQ. With the
increase of the bandwidth, the PESQ score tends to decrease.
However, the wideband systems had the better speech signal
recovery according to SIG, but the “8ms” system had the
worst performance in suppressing intrusion noise (BAK) and
overall signal recovery (OVRL). Due to the transient nature,
the speech signal is periodic in the range of vowels. The
“8ms” spectrogram is too short to cover transient stability,
thus the “8ms” system had the worst performance.

TABLE II
THE INPUT DIMENSION (32MS, 16MS, 8MS) OF LINEAR BLOCK IN

DIFFERENT ENCODER LAYERS: WE USE THE OUTPUT DIMENSION OF
CONV BLOCK (n) × THE NUMBER OF FRAMING m.

Encoder Layers 32ms 16ms 8ms
1 128 × 1 64 × 3 32 × 7
2 63 × 1 31 × 3 15 × 7
3 31 × 1 15 × 3 7 × 7
4 15 × 1 7 × 3 3 × 7
5 7 × 1 3 × 3 1 × 7

B. Effect of Linear Block

We directly added a Linear Block to the 32ms-based system
for fair comparisons. A Linear Block was added after each
Conv Block in the encoder without introducing auxiliary
information of other bandwidths. The results in Table I show
that adding Linear Blocks slightly improved SIG and BAK
scores. However, OVRL and PESQ of the enhanced speech
signal are degraded.

C. Effect of MI-F

In the MI-F method, a Linear Block is added to the last
layer of the encoder. The experimental results in Table I show
that the best performance was obtained when using the “8ms
aux.”. With “16ms aux.” and “8, 16ms aux.”, SIG, BAK, and
OVRL were improved but the improvement of PESQ was
limited. The results show a trend that “8ms aux.” was better
than “16ms aux.”, and “16ms aux.” was better than “8, 16ms
aux.”. We reason that it is difficult for a single linear layer
to incorporate a lot of information. Table II shows the input
dimension of the Linear Block in different encoder layers.
The 16ms spectrogram contains 9 dimensions (3×3) in the
fifth encoder layer, while there are only 7 dimensions (1×7)
for the 8ms spectrogram. High-dimensional (9-dimensional
embedding for 16ms; 16-dimensional embedding for 8, 16ms
aux.) features are not well fused by the single linear layer,
resulting in a limited performance improvement.

D. Effect of MI-L

In the MI-L method, a Linear Block is added after each
Conv Block in the encoder for information fusion. The
experimental results in Table I show that the best performance
was obtained when using the “8, 16ms aux.”, while “8ms aux.”
and “16ms aux.” had limited improvement for PESQ. When
8ms and 16ms spectrograms were used into the network as
auxiliary information simultaneously, all evaluation measures
were greatly improved. This shows that with layer-by-layer
fusion the different spectral information was fused well.

E. Difference Between MI-F and MI-L

In both MI-F and MI-L, “8ms aux.” achieved better
performance than “16ms aux.”. Compared with the 16ms
spectrogram, the 8ms spectrogram has a larger difference
from the 32ms spectrogram. Therefore, spectral information
with larger differences is more effective. In addition, with
sufficient fusion capability, more information can lead to



Fig. 5. Spectrograms of different SE systems.

better performance. MI-L outperforms MI-F on all evaluation
measures. Besides, MI-F needs the fusion layer to have a
smaller dimension, while MI-L needs the fusion layer to have
a larger dimension. Furthermore, the auxiliary spectrogram
of MI-F needs to be much different from the main enhanced
spectrogram, while auxiliary spectrograms of MI-L are re-
quired to have more complete information.

F. Effect of Proposed Methods on Spectrogram

Fig. 5 shows the spectrograms of different SE systems. The
main difference between these SE methods is the restoration
of high frequencies and the processing of silent segments. Part
A is a silent segment, “CRN” lost a lot of energy, while “MI-
L” has better signal recovery. Furthermore, both “MI-F” and
“MI-L” achieved recovery of sharper high-frequency detail.
For Part B, “MI-F” and “MI-L” had better high-frequency
recoveries than “CRN”. For Part C, some noise was not re-
moved in all enhanced spectrograms, but “MI-L” contains less
noise. We reason that the time-varying information provided
by the wideband spectrogram helps narrowband spectrogram
restoration. Furthermore, although the PESQ of “MI-F” was
the same as that of “MI-L”, there is still some information
loss in “MI-F”. Spectrograms with more bandwidth as input
features help preserve spectral information.

V. CONCLUSIONS

In this paper, we aim to improve a narrowband-based
SE system with the wider bandwidth spectrograms as auxil-
iary information. We propose multi-input final fusion (MI-F)
and multi-input layer-by-layer fusion (MI-L) to incorporate
information from different bandwidth spectrograms. MI-F
adds a Linear Block only to the last layer of the encoder,
while MI-L adds Linear Block after each Conv Block in
the encoder for information fusion. With better fusion ability,
MI-L achieves a better performance. Moreover, systems with
larger differences in bandwidth achieve better performance.
The proposed methods achieved better spectral recovery on
silent segments and high-frequency spectrograms.
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