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ABSTRACT

Diffusion-based speech enhancement (SE) is a probabilistic model
that provides distribution of enhanced speech. Based on this prop-
erty, we previously proposed ensemble inference and showed that
solving a reverse Stochastic Differential Equation (SDE) multiple
times and performing an ensemble over the obtained samples sig-
nificantly improves the performance. Unfortunately, we failed to
sufficiently explore our proposed ensemble inference. First, we only
tested it on target speech extraction (TSE) and not on such general
SE tasks as denoising. Second, sample generation greatly increased
the computational complexity. Finally, the method considered all
samples equally without heeding potential outliers. This paper ad-
dresses these issues and proposes a computationally efficient sample
generation technique called SplitTree and ensemble inference com-
bined with outlier removal to improve the ensemble’s effectiveness.
We conducted experiments using the WSJ-CHiME3 and LibriMix-
2spk datasets for denoising and TSE tasks and confirmed the fol-
lowing: 1) Ensemble inference also helps denoising tasks; 2) Split-
Tree reduces the complexity of the ensemble inference by about 40%
while maintaining a similar level of performance; and 3) Our pro-
posed outlier removal improves the ensemble performance for TSE
task.

Index Terms— Ensemble inference, diffusion model, speech
enhancement, SplitTree, target speaker extraction

1. INTRODUCTION

Speech enhancement (SE) aims to improve the quality of speech sig-
nals corrupted by other speakers or non-speech interferences. This
is particularly important in real-world scenarios [1] where noise
can significantly degrade the performance of speech-related applica-
tions. Deep neural network (DNN)-based SE systems [2] have been
shown more powerful than traditional SE systems [3, 4], fueling re-
search interest [2, 5, 6, 7]. These systems can be broadly categorized
as either deterministic [6, 7, 8, 9] or probabilistic [10, 11, 12, 13] ap-
proaches with different processing ideas. Deterministic SE systems
learn optimal deterministic mapping from noisy speech to clean
speech [12]. On the other hand, probabilistic SE systems capture the
target distribution, either implicitly or explicitly [10, 11, 12, 13].

Among probabilistic systems, diffusion models have received
significant attention for their robust performance across various tasks
[14, 15]. Diffusion models are inspired by non-equilibrium thermo-
dynamics. The data are gradually transformed into noise, during
which a neural network learns to reverse the incremental process of
noise addition. The score-based diffusion model stands out with ex-
cellent performance for various SE tasks such as speech denoising,
dereverberation, blind source separation, and target speech extrac-
tion (TSE) [11, 12, 16, 17]. This model is based on a stochastic
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(b) Proposed SplitTree ensemble inference
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Fig. 1: Flowchart of ensemble inference (a) performing M indepen-
dent reverse diffusion processes in parallel from n = N to 0 and (b)
starting a single reverse diffusion process and splitting it into several
branches at its intermediate time steps (n = n′ and n = n′′).

differential equation (SDE), which makes the training fully proba-
bilistic without any prior noise distribution assumptions [12, 18]. Its
reverse diffusion process is also based on SDE [18].

Because the reverse diffusion process involves numerous ran-
dom components, they introduce local variations of the enhanced
speech, and often cause the estimate largely deviate from the de-
sirable values. In our previous research [16], we found that rather
than performing a single reverse process, performing multiple re-
verse processes followed by computing their ensemble ( Fig.1–(a))
significantly improved the enhancement. We call this approach en-
semble inference. However, performing multiple reverse processes
significantly increases the computational cost. The ensemble infer-
ence proposed for TSE [16] is not fully analyzed and untested for
other SE tasks such as denoising.

In this paper, we extend ensemble inference to a denoising task
and conduct deeper studies on it. We first confirm the effectiveness
of ensemble inference for a denoising task and explore better ways
to generate ensemble samples from two aspects:

- We propose SplitTree to more efficiently generate samples
for ensemble inference. Instead of running several indepen-
dent reverse processes to generate samples, SplitTree splits a
single diffusion process at its intermediate steps to generate
multiple samples. Because SplitTree shares certain parts of
computations across different samples, it can largely reduce
computational costs.

- Enhanced samples with poor quality unfavorably affect the
ensemble inference’s performance. We remove such outliers
from the ensemble process to improve its performance.

The remainder of this paper is organized as follows. Section 2
provides an overview of diffusion-based SE for denoising and TSE.
Section 3 describes ensemble inference with our proposed modifica-
tions. Section 4 gives the experimental settings and results. Section 5
gives the conclusion and future work.



2. SPEECH ENHANCEMENT USING SCORE-BASED
DIFFUSION MODEL

In this paper, we investigate two distinct SE tasks, denoising and
TSE. To simplify the derivation, we provide a general formulation
for both tasks. The signal received by a microphone is represented
as follows:

y = x0 + v, (1)

where y, x0, and v ∈ CNf×Nt denote complex spectra of the micro-
phone signal, the clean speech, and the interference signal. Nf and
Nt are numbers of frequencies and time frames, respectively. For the
denoising task, v represents the additive noise, and for the TSE task,
it represents the interference speakers. Although these two tasks aim
to recover x0 from y, there are some differences. For the denoising
task, only y is needed as the input feature, while for the TSE task,
an additional enrollment utterance of target speaker c is needed as a
speaker clue to identify the target in the mixture.

2.1. Stochastic Process in Score-based Diffusion Model

A diffusion model is defined by a forward stochastic differential
equation (SDE). For the denoising and TSE tasks, it transforms a
clean speech x0 to an observed speech y plus a white Gaussian noise
[12, 16]. The SE tasks can then be achieved by reversely solving the
forward SDE using a reverse SDE [18, 19]. This requires a score
∇xt logpt(xt|y) on a state of the SDE, xt, at each continuous state
index t ∈ [0, T ] [18, 20]. To approximate the score, we use a neural
network sθ with parameter set θ, called a score model.

The reverse SDE can be expressed using the score model:

dxt =
[
−f(xt, y) + g(t)2sθ

]
dt+ g(t)dw̄, (2)

where w̄ is a standard Wiener process, and f and g are drift and dif-
fusion coefficient functions, respectively. The SE tasks are achieved
by solving the reverse SDE from t = T to 0. Different conditions
are posed to the score models for the denoising and TSE tasks. The
denoising is conditioned only on an observed speech y, and fol-
lows conditional probability pt(xt|y). The TSE is also conditioned
on speaker clue c, and follows conditional probability pt(xt|y, c).
Thus, the input arguments of the score models for the denoising and
TSE are defined as sθ(xt, y, t) and sθ(xt, y, c, t).

2.2. Training Objective for Score-based Diffusion Model

The training loss to determine model parameters θ is defined based
on the Mean Square Error (MSE) between true and estimated scores.
The overall training objectives for denoising and TSE are derived as
follows [12, 16]:

arg min
θ

E

[∥∥∥∥sθ + z

σ(t)

∥∥∥∥2

2

]
, (3)

where z ∼ NC(z; 0, I) is a sampled white Gaussian noise with I be-
ing an identity matrix, and σ(t)2 is the variance of the white Gaus-
sian noise included in xt according to the forward SDE.

2.3. Inference

The inference procedure by the reverse SDE, Eq. (2), starts at t = T
and iteratively goes backward to t = 0. Starting state xT of the
reverse process at t = T is sampled as follows [12]:

xT ∼ Nc(xT ; y, σ(T )
2I). (4)

To numerically find the solution of the reverse SDE , the interval
[0, T ] is partitioned into N steps of width ∆t = T/N , and we utilize
the discrete reverse process over {xT , xT−∆t, ..., x0}. We employ
the so-called Predictor-Corrector (PC) samplers [18] to numerically
solve the SDE. For each step, the current state is determined using
both predictor and corrector methods by referencing the state from
the previous step. Each of the predictor and corrector steps requires
one call of score model sθ . Note that at each step, white Gaussian
noise is introduced according to Eq. (2) both by the predictor and
corrector. Consequently, the inference results depend on the seed of
the random generator in the actual implementation.

3. ENSEMBLE INFERENCE

Because the inference is stochastic, running the inference process
with different random seeds leads to different enhanced signals
sampled from p0(x0|y) (or p0(x0|y, c) for TSE). In our previous
work[16], we exploited this property to improve the estimation by
performing ensemble inference and obtained enhanced speech x̄0

by averaging multiple generated samples xm
0 (1 ≤ m ≤ M ):

x̄0 =

∑M
m=1 x

m
0

M
. (5)

Although ensemble inference works well with Eq. 5, it is time-
consuming to get K instances of x0. Poor-quality enhanced samples
are also ensembled during the inference. To overcome these issues,
in the following, we propose two modifications of the ensemble
average approach, i.e., SplitTree and outlier removal, to improve the
computational efficiency and effectiveness of the ensemble process.

3.1. SplitTree Ensemble Inference

Although ensemble inference significantly improved the quality of
the enhanced speech, unfortunately, it increased the decoding time.
For example, in our previous work [16], shown in Fig. 1-(a), we
generated M samples for ensemble inference by sampling M dif-
ferent initial states, i.e., xT in Eq. (4), of the reverse SDE process.
Therefore, the entire reverse diffusion process must be run M times;
It evokes MN “calls” of the PC sampling using deep neural network
when discretizing each reverse diffusion process into N steps. We
showed that this approach was successful for ensemble inference in
terms of enhanced speech quality. However, increasing the number
of calls for the ensemble inference significantly lengthens the decod-
ing time.

As explained in Section 2.3, noise is introduced not only at the
initial step t = T but also at each step t of the reverse process. This
means that we can also generate multiple noise samples at intermedi-
ate steps in the reverse process as in Fig. 1-(b). It allows us to share a
part of the computations across the reverse processes. This approach
is called SplitTree. Even though the interval [0, T ] is still divided
into N steps, fewer calls are needed when splitting the reverse pro-
cess at intermediate steps. Hereafter, we call a step at which we split
the process a split point, and refer to it by an integer from n = 0 to
N corresponding to the discrete step of the diffusion process from
t = 0 to T . We may put a single or multiple split points in the pro-
cess. For example, when we split the process into M branches at a
single split point n (< N ), the number of calls required by SplitTree
is N + (n + 1)(M − 1), which can be much smaller when using
n ≪ N in comparison with MN .

Note also that using sufficiently diverse samples is crucial for
ensemble inference. The sample diversity will decrease if the split
points are put only at the latter stages of the inference process since



the variance of the added noise decreases in the latter stages. We
next examine a tradeoff between performance and efficiency in our
experiments.

3.2. Outlier Removal

When some samples generated for ensemble inference have ex-
tremely poor quality, they degrade the ensemble inference. We
avoid this problem by introducing outlier removal, which detects
poor samples as outliers and removes them before calculating the
ensemble. We adopt for outlier detection a simple probabilistic
thresholding that assumes that generated samples are normally
distributed and detects a sample as an outlier when it deviates prob-
abilistically from the mean of the distribution by more than a certain
threshold η. Sample xm

0 is detected as an outlier when distance
D[m] defined below is D[m] > η:

d[m, l] =

∑
n∈Sl

|xm
0 [i]− x̄0[i]|2∑

n∈Sl
β2[i] + τ

, (6)

β2[i] =
1

M

∑
m

|xm
0 [i]− x̄0[i]|2, (7)

D[m] =
1

L

∑
l

d[m, l], (8)

where xm
0 [i] and x̄0[i] are the time domain signals for xm

0 and x̄0 in
Eq. (5) at time index i, β2[i] is a sample variance at i, and d[m, l]
is the deviation of the m-th sample within each signal segment Sl

(1 ≤ l ≤ L) with flooring constant τ . Distance D[m] is determined
to be the average of d[m, l] over all the segments.

In preliminary experiments, we observed the outliers tended to
occur within a relatively short time segment. Thus, we first calcu-
lated the deviation within each segment in Eq. (6), and averaged it
over a whole utterance in Eq. (8) to determine the outliers. We then
performed utterance-wise ensemble.

4. EXPERIMENTS

4.1. Datasets

We performed experiments on both the denoising and TSE tasks. For
denoising task, we synthesized the WSJ0-CHiME3 dataset by com-
bining clean speech utterances from the Wall Street Journal (WSJ0)
dataset [21] with noise signals from the CHiME3 dataset [22]. Each
observed signal was created by randomly selecting a noise file and
combining it with clean utterance. Every utterance was employed
only once, and the Signal-to-Noise Ratio (SNR) was uniformly sam-
pled within a range of 0 to 20 dB for the training, validation, and test
sets.

For the TSE task, we performed experiments using the openly
available LibriMix-2spk dataset [23]. We used the 100-hours version
of the data and followed the openly available recipe1 that defines the
enrollment utterances used for each mixture in the test set.

4.2. Settings

The network architecture and training strategies were consistent with
those of SGMSE+ for both the denoising and TSE tasks2 [12]. Since
the diffusion process is defined in the complex short-time Fourier
transform (STFT) domain, we used the concatenation of the real and

1https://github.com/butspeechfit/speakerbeam
2https://github.com/sp-uhh/sgmse

Table 1: Performance of Ensemble with different numbers of en-
hanced samples. ESTOI utilizes a percentage value (%).

Model PESQ ESTOI SI-SDR SI-SIR SI-SAR

Denoising

1 sample 2.84 91.93 16.52 33.53 16.61

En. 2 3.01 92.97 17.32 33.54 17.43
En. 4 3.11 93.49 17.82 33.57 17.95
En. 8 3.16 93.79 18.10 33.56 18.24
En. 10 3.17 93.86 18.16 33.57 18.30

TSE

1 sample 2.79 77.26 9.40 44.31 9.40

En. 2 2.94 79.17 10.46 44.48 10.45
En. 4 3.04 80.26 11.16 44.60 11.15
En. 8 3.08 80.89 11.58 44.68 11.57
En. 10 3.10 81.04 11.67 44.69 11.66

imaginary parts of the signals for the input and output features of
the score model. The Noise Conditional Score Network (NCSN++)
architecture was used for the score model. BigGAN architecture was
used for the residual blocks in the upsampling and downsampling
layers. Two or three residual blocks were in each upsampling or
downsampling layer. Global attention was added at a resolution of
16× 16 and in the bottleneck layer.

For the TSE task, in addition to the input for the denoising
model, we need to feed the enrollment utterance to it. To extract
the speaker embedding vector from the enrollment utterance, we
used an additional neural network, called clue encoder. The network
structure consisted of three BLSTM layers. Speaker embedding was
created by averaging the output values from the clue encoder over
all the time frames and multiplied with the output of the second
resblock in NCSN++. As described in our previous work [16], we
also proposed a multi-task (MT) objective model for the TSE task,
referred to as Diff-TSE-MT, by combining diffusion model and
conventional deterministic TSE model. We used the Diff-TSE-MT
model in this paper.

We evaluated enhancement performance using the following
schemes: Perceptual Evaluation of Speech Quality (PESQ), Ex-
tended Short-Time Objective Intelligibility (ESTOI), Scale-Invariant
(SI-) Signal-to-Distortion Ratio (SDR), Signal-to-Interference Ratio
(SIR), and Signal-to-Artifact Ratio (SAR).

For an experiment of outlier removal, we investigated multiple
values for threshold η but fixed τ to 1× 10−4 and the segment size
to 2048.

4.3. Ensemble Analysis

Table 1 shows the enhancement performance for both the denois-
ing and TSE tasks with and without ensemble inference for different
numbers of samples. The results show that ensemble inference was
effective for both tasks, respectively improving SI-SDR by 1.6 and
2.3 dB for the denoising and TSE tasks. Ensemble inference was
effective even when using just two samples; the performance further
improved with up to eight samples. After that, the improvement be-
came less significant. In the following, we set the number of samples
to eight. By comparing the performances across different ensemble
numbers, it becomes evident that the Ensemble method primarily re-
duces signal distortion and artifacts, although it has less impact on
reducing interference, as seen by the SI-SIR values.

https://github.com/butspeechfit/speakerbeam
https://github.com/sp-uhh/sgmse


Table 2: SplitTree performance with a reverse process splitted at
different “Split points” to “# Splits” branches. “# Calls” denotes the
total number of PC sampling calls.

Split points # Splits #Calls PESQ SI-SDR

(1) - 1 30 2.84 16.52
(2) 30 8 240 3.16 18.10

(3) 21 8 177 3.14 18.10
(4) 11 8 107 3.05 17.73
(5) 30, 21 2, 4 186 3.15 18.08
(6) 30, 21, 11 2, 2, 2 146 3.13 18.06

Fig. 2: Effect of threshold η on number of mixtures with outliers
found (red line) and effectiveness of Ensemble with outlier removal
(blue line) measured as the ratio of the amount of improved test data
by outlier removal over the amount of test data with outliers found.

4.4. Evalutation of SplitTree

Next, we analyzed the effect of the proposed SplitTree to improve
the efficiency of ensemble inference. Table 2 shows its results for a
denoising task with different splitting strategies. We fixed the num-
ber of reverse diffusion steps to N = 30 and the total number of
generated samples to M = 8. As shown in the table, (2) corre-
sponds to splitting the process at the initial step (n = 30), as we
previously proposed in [16]. A single split point was set for (3) and
(4), and multiple split points were set for (5) and (6). Comparing
experiments (2) and (3), splitting the SDE process at an intermediate
step was also very effective because it significantly reduced the num-
ber of calls while maintaining consistent performance. Comparing
experiments (3) and (4), splitting at a smaller n reduced the number
of calls but also lowered the performance. This observation indicates
that when n is too small, the added noise power is unable to generate
enough variation in the generated samples. Performing splitting at
different steps (i.e., experiments (5) and (6)) can further reduce the
number of calls by up to 40 % while maintaining performance.

4.5. Evaluation of Outlier removal

Finally, we analyzed the impact of our proposed outlier removal for
the TSE task. First, we investigated how to set threshold value η.
Fig. 2 shows the amount of test data with outliers found when vary-
ing threshold η and the proportion of the improved test data. Set-
ting η to a small value (e.g., η = 1.3) means that many samples
are considered outliers, which reduces the benefit of ensemble infer-
ence since many valid samples are discarded. Increasing threshold
η reduces the number of outliers found (red line) but ensures that
Ensemble is more effective (blue line). In the following, we set η to
2.5.

Figure 3 shows the SI-SDR improvement with outlier removal as
a function of the SI-SDR of the original ensemble without removal
(for simplicity, we only show test data where outliers were found

Fig. 3: Effect of outlier removal with η = 2.5

(a) Enhanced (D[m] = 0.35) (b) Enhanced (D[m] = 4.52)

(c) Ground truth of target (d) Ground truth of interference

Fig. 4: Spectrograms

by our proposed method). Outlier removal successfully improved
the SI-SDR in most cases. Note that the test data with low SI-SDR
values, e.g., below 0 dB, are degraded. These data points consti-
tute extraction failures for which the target speaker was not correctly
identified in the mixture for most samples. In such cases, our pro-
posed outlier removal naturally cannot improve the performance as
most of the samples correspond to the interference and not the target
speaker.

Figure 4 shows the spectrograms of the enhanced samples and
the ground-truth targets and the interference signals for a test mix-
ture, where the SI-SDR performance was improved by 3.60 dB with
outlier removal. With a threshold value of η = 2.5, the proposed
method identified sample (b) as an outlier, which is indeed an ex-
traction failure since its spectrogram resembles the interference.

Note that we also tested outlier removal for a denoising task,
although we did not observe any improvement because the identifi-
cation failure for a target speaker cannot happen with it. This result
suggests the potential improvement is limited.

5. CONCLUSIONS

We investigated ensemble inference for diffusion model-based TSE
and denoising tasks and proposed two extensions: outlier removal to
improve its effectiveness and SplitTree to raise its computational ef-
ficiency. Experimental results showed that ensemble inference was
effective for both the denoising and TSE tasks and primarily con-
tributed to reducing the artifacts. We also showed that our proposed
outlier removal procedure could improve TSE performance and that
ensemble inference’s efficiency was raised by up to 40% using the
proposed SplitTree approach. In the future, we will investigate ad-
ditional methods to identify outliers and further enhance the sample
generation speed.
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hancement Generative Adversarial Network,” in Proc. Inter-
speech, 2017, pp. 3642–3646.

[11] Y.-J. Lu, Z.-Q. Wang, S. Watanabe, A. Richard, C. Yu, and
Y. Tsao, “Conditional Diffusion Probabilistic Model for
Speech Enhancement,” in Proc. ICASSP, 2022, pp. 7402–
7406.

[12] J. Richter, S. Welker, J.-M. Lemercier, B. Lay, and T. Gerk-
mann, “Speech Enhancement and Dereverberation With
Diffusion-Based Generative Models,” IEEE/ACM TASLP, vol.
31, pp. 2351–2364, 2023.

[13] S. Leglaive, L. Girin, and R. Horaud, “A variance modeling
framework based on variational autoencoders for speech en-
hancement,” in Proc. MLSP, 2018, pp. 1–6.

[14] Y. Song and S. Ermon, “Generative modeling by estimating
gradients of the data distribution,” in Proc. NIPS, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
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