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Abstract. Recently, deep learning-based speech dereverberation appro-
aches have achieved remarkable performance by directly mapping the in-
put spectrogram to a target spectrogram or time-frequency mask. How-
ever, these approaches are usually optimized under distance-related ob-
jective functions—the mean square error (MSE). The traditional MSE
training criterion results in a strong inherent uniform variance statisti-
cal assumption on the target speech and noise during training, which
cannot be satisfied in real-world scenarios. To alleviate such an assump-
tion mismatch problem, we propose a speech dereverberation solution
called Scale-aware Speech Dereverberation (SaSD) based on scaled-MSE.
Specifically, we modify the MSE with different scales for each frequency
band and progressively reduce the gap between the low- and high-frequency
ranges to make the error follow the assumption of MSE assumption. Ex-
periments demonstrated that SaSD achieved 1.0 SRMR and 0.8 PESQ
improvements over the mapping baseline system.

Keywords: Speech dereverberation - Scale-aware mean square error -
Progressive learning - Deep learning.

1 Introduction

In real-world environments, the sound reaching the ears comprises the clean
direct-path speech and its reflections from various surfaces, which drastically
reduce speech signal intelligibility [11]. To minimize the distortions in real-world
cases, speech dereverberation, as an important front-end signal processing mod-
ule, is designed to remove the adverse effects of reverberation for the back-end
speech applications, such as speech recognition [10, 13].

Recently, some researchers have explored the use of deep neural networks for
speech dereverberation, such as using spectral mapping methods [4, 7]. The key
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Fig. 1. The mean square error of the observed noisy speech and clean speech for all
frequency bands on REVERB dataset.

strategy is to view the speech dereverberation as a regression problem, where the
nonlinear regression function can be parametrized using deep neural networks.
In recent years, there have been many models based on spectral mapping, such
as DNN [24], CNN [14], RNN [23], GAN [15,22], CRNN [20], etc.

Generally, these spectral mapping approaches are optimized by a distance-
related objective function, such as the mean square error (MSE) [12, 3]. However,
simple applying a distance-related objective function to dereverberation network
training results in strong inherent assumptions on the statistics of the clean
speech and noise [2,5]. For example, the MSE objective function assumes that
the errors of all frequency bands have zero means and uniform variance [19].
Unfortunately, this assumption cannot be met in real-world scenarios because
the target clean speech and noisy speech have a non-uniform spectral distribution
as shown in Fig. 1. From it, we can observe that the error between the target
clean speech and noisy speech in the approximately 1-50 frequency bands are
much larger than that in higher frequency range. Such an assumption mismatch
for the MSE has the problem of underestimating the error in the frequency range
with lower power, leads to the training difficulty of speech dereverberation in the
higher frequency range.

To address the above problem, we propose a speech dereverberation approach
based on scaled-MSE loss function called Scale-aware Speech Dereverberation
(SaSD). To make the error follow the statistical assumption of the MSE, we first
modify the MSE loss function using different weights for frequency bands, where
the low-frequency bands are given larger weights and the high-frequency bands
are given smaller weights. Additionally, motivated by the idea of SNR-based
progressive learning (PL) in the literature [6,21], we use the PL strategy to
gradually reduce the gap between high- and low-frequency range. Thus, we can
apply the MSE loss function with the help of the progressive learning approach
to equally treat the error for each frequency. From the comparison of the loss
curves, it can be observed that by using our method, the gap between high-
frequency and low-frequency gradually decreases with the progress of the stage
and significantly reduce the error between the predicted spectrogram and the
target spectrogram. And from the experimental results, it is helpful to improve
the speech dereverberation ability by using the method we proposed.
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Fig. 2. The diagram of the SaSD. The whole system consists of three progressive stages.
Each stage contains three FCN blocks and each block is a U-net structure, including
four 2D convolution layers transposed convolution layers.
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2 Spectral Mapping with MSE Loss

In real-world environments, the original source (direct sound) s(t) is easily de-
stroyed by convolutional noise r(t) and additive background noise b(¢). Thus,
the observed signal y(t) can be written as follows:

y(t) = s(t) = r(t) + b(t) (1)
Mapping-based methods aim to learn a nonlinear function F from the observed
noisy speech y(t) into the desired clean speech s(t), as described by the following:

y(t) T s(t) (2)
To learn F, the neural network is trained to reconstruct the target speech spec-
trum S(n, f) from the corresponding input noisy speech spectrum Y (n, f) [1]. In
traditional methods, the parameters of the model are determined by minimizing
the mean square error (MSE) objective function as follows:

N F
1
Luse = 5 > D IIF (0, ) = S, ) (3)
n=1 f=1
where N and F' are the number of frames and frequency bands, respectively.
The n and f are the corresponding index of the frame and frequency band.

3 Scale-aware Speech Dereverberation Architecture

SaSD is a progressive mapping pipeline with multiple stages. We use a three-
stage architecture in this work, as shown in Fig. 2. Different from the traditional
MSE objective function, we use scaled-MSE for different frequency bands as the
training criterion, and design three-stage progressive architecture to alleviate the
assumptions in MSE loss.
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3.1 Scaled-MSE loss

Since the MSE objective function assumes that the mean error of all frequencies
are zero and the variance are the same, this assumption cannot be met in the
fact that the same distortion in different frequency bands has different effects on
speech quality. Motivated by this, we firstly apply a scaled-MSE loss to reduce
the error gap between low- and high-frequency bands, which is defined as:

N F
1
Lscatea-MsE(Wf) = 7 7 DD willF(Y (n, f) = S(n, fII? (4)
n=1 f=1
where wy is the scale parameter of the f-th frequency band. Here, we use a
linear function to define wy, so the weight value will change as the frequency
band changes. The formula is defined as follows:
1— .
wp=1- —" s (f = 1) (5)
where w,,;, represents the minimum scale threshold hyperparameter. It is used
to control the minimum weight of the high frequency band in the training pro-
cess.

By applying scaled-MSE training criterion, the low-frequency bands are given
large weights and the high-frequency bands are weighted with smaller scales.
During the training stage, the dereverberaton network pays more attention to
reducing the reconstruction error of low-frequency bands, rather than treating
each frequency band equally.

3.2 Progressive scaled-MSE loss

Reducing the gap between high and low frequency bands is a complex learning
process, and direct mapping optimization with scaled-MSE training criterion is
hard to achieve the expected goal. Motivated by the progressive learning study
in speech enhancement [6], we propose the progressive scaled-MSE loss to de-
compose the complicated non-linear mapping problem into a series of easier
sub-problems. The key idea is to gradually reduce the reconstruction error be-
tween noisy and clean speech at low frequencies in a multi-stage manner, and
finally apply the original MSE objective function to guide the dereverberation
network. The progressive scaled-MSE loss is define as follow:
P
Lprog-MSE = Z ap£Scaled—MSE(w?)

p=1

| BNE (6)
= 55 2 2 2 wwflIF(Y (n. f) = S(n. f)I?
p=1n=1 f=1

where P denotes the number of stages in the whole system, and o, represents the
weight coefficient of the p-th stage loss. The w? is calculated from the parameter
Wpmin at p-th stage using Eq. (5). In this study, we apply three-stage mapping
architecture as shown in Fig. 2.
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4 Experiments and Discussion

4.1 Dataset

The experiments were conducted on the REVERB challenge dataset [10,9]. The
database contains simulated and real recordings, that have been sampled from
different rooms with different reverberation levels and 20 dB SNR of background
noise. The simulated data were generated by convolving the room impulse re-
sponses (RIRs) collected from rooms of three different sizes (small, medium,
large) and two different microphone positions (near, far) by using single-channel
microphones and clean speech utterances from WSJCAMO [17]. The corpus was
divided into training, validation and test sets. The training data included 7,861
simulated recordings, whereas the test data contained simulated and real record-
ings. The validation set used only the simulated data. All of the speech signals
were sampled at 16 kHz.

4.2 Experimental setup

For all models, the window length and hop size were 32 ms and 16 ms, and the
FFT length was 512. All of the models were implemented on TensorFlow, and the
weights of them were randomly initialized. The architecture of SaSD was divided
into three stages with FCN blocks [18]; each block is a U-net structure [25] that
mainly consists of four two-dimensional (2D) convolution layers and four 2D
transposed convolution layers, where the numbers of filters for each convolution
layer were 8, 16, 16, 32, 16, 16, 8 and 1. ReLU was used as the activation
function, as shown in Fig. 2. The a;, of our proposed model for stages 1 and 2 is
0.1, and the «a;, for stage 3 is 1. In the experiments, the perceptual evaluation of
speech quality (PESQ) [16] and speech-to-reverberation modulation energy ratio
(SRMR) [8] were used as the evaluation metrics. All approaches use noisy phase
information to reconstruct the enhanced waveform. To choose the model for
speech reverberation, several models were compared on the REVERB dataset,
which are described as follows:

Traditional methods: @Reverb: reverberant spectrogram; @Mapping:
mapping system with one FCN block; ®Naive Iteration: mapping system with
three naive iterative FCN blocks and use the final output to calculate the loss.

Proposed methods (SaSD): the proposed system that consists of three
progressive stages. During the training, the intermediate predicted spectrogram
from previous stage is concatenated with the noisy spectrogram as input into the
next stage. The overall loss is the sum of the loss value in each stage. According
to the change of the weight value, it is divided into two cases as:
®@hard: the proposed approach that divides the entire frequency domain into
three equal parts, with each part adopting a fixed weight at each stage; in this
experiment, (1, 0.5, 0) and (1, 0.75, 0.5) were used in stages 1 and 2, respectively.
@linear (w}- w}- w}): the approach in which the threshold of wy for stages
1, 2, and 3 are w}, w?, and wf’c, respectively. At each stage, as the frequency
increases, the weight values of different frequencies linearly decrease from 1 to
the threshold. In this experiment, we set a total of three sets of different weight
thresholds to evaluate the performance of our proposed model.
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Table 1. PESQ and SRMR in a comparative study on the REVERB dataset. In the
table, wmin denotes the weight threshold of the high frequency band; Mode denotes
the change in weight value; hard means each part adopting a fixed weight at each stage
and linear means the weight values will linearly decrease from 1 to the threshold; #1,
#2, #8 denote the number of stages.

Configurations PESQ SRMR
Model Wmin (Fstage) Simulated Simulated Real
Mode‘#l‘ #2 ‘#3 Far ‘Near‘Ave. Far ‘Near‘Ave. Far ‘Near‘Ave.
Reverb - - | - | - 1215|259 |2.37|3.43| 3.94 | 3.68 |3.19| 3.17 | 3.18
Mapping - - - - 12.42] 2.66 | 2.54 |4.20| 4.66 | 4.43 |4.01| 3.66 | 3.83

Naive Iteration| - -
hard | 0 | 0.5
linear | 0 | 0.5
linear [ 0.5 (0.75

linear | 1 1

2.42|2.74 12,58 [4.25] 4.70 | 4.47|3.86| 3.55 | 3.71
2.46| 2.76 | 2.61 |4.67| 5.17 | 4.92 |4.59| 4.08 | 4.33
2.43| 2.70 | 2.57 [4.72] 5.14 |4.93|5.03| 4.62 | 4.82
2.45| 2.74 12.60 {4.63]5.19 | 4.91 |4.69 | 4.22 | 4.46
2.46| 2.78 |2.62|4.32| 4.89 | 4.60 |4.15| 3.70 | 3.93

SaSD

e B

4.3 Experimental results and discussion

We compared our SaSD with previous baseline systems on REVERB in terms
of PESQ and SRMR in Table 2. Regardless of the evaluation index used, the
experimental results showed that the highest scores were obtained by SaSD. Ad-
ditionally, when the average frequency was divided into three parts with equal
weights, a high PESQ measure was obtained. Furthermore, on simulated data,
the naive iteration mapping model achieved better performance than the single
mapping model in terms of both PESQ and SRMR. Conversely, the opposite
was true for real data. This outcome may be due to the difference between the
data distributions of the real and simulated datasets, and such a superimposed
network may be more affected than a single network, thereby resulting in per-
formance degradation on the real dataset. However, when the direct mapping of
noisy speech to pure speech was decomposed into multiple stages as the frequency
weight threshold increased, the model also achieved good performance. To verify
the effectiveness of the progressive learning strategy, the mean square error for
all frequency bands at each stage is shown in Fig. 3. It is observed from Fig. 3
that the gap between the high-frequency and low-frequency results gradually de-
creases with the progress of the stage. This fact shows that progressive learning
with scaled loss can help the dereverberation network alleviate the assumption
mismatch of MSE. In addition, we further verified the effectiveness with naive
iteration scheme, as shown in Fig. 4. Compared with the results under the naive
iteration scheme, we found that our ProgressSD approach can significantly re-
duce the deviation of the predicted spectrogram from the target spectrogram.
This improvement is from the greater stability and better convergence of the
dereverberation network trained under scaled-MSE.

5 Conclusion and future work

In this paper, we proposed a system featuring scaled-MSE and PL, which is
called SaSD. We modified the MSE with different scales for each frequency band
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Fig. 3. Scaled mean square error loss values at each frequency range for different pro-
gressive stages.
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Fig. 4. Mean square error loss values at each frequency band for our SaASD and 3-
mapping naive iteration system.

and progressively reduced the gap between the low- and high-frequency range
that was used for speech dereverberation based on mapping; this was done in
order to solve the problem of the nonuniform variance of different frequency
bands that makes some regions in the spectrogram difficult to learn. The experi-
mental results showed that the loss curve became more stable and showed better
convergence with SaSD. It was also found that all the approaches of PL that
used scaled-MSE exhibited improved performance, particularly with respect to
SRMR and PESQ. In the future, we will replace our current network with a
state-of-the-art network structure.
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