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Abstract

Speech enhancement aims to keep the real speech signal and

reduce noise for building robust communication systems. Un-

der the success of DNN, significant progress has been made.

Nevertheless, accuracy of the speech enhancement system is

not satisfactory due to insufficient consideration of varied en-

vironmental and contextual information in complex cases. To

address these problems, this research proposes an end-to-end

environment-dependent attention-driven approach. The local

frequency-temporal pattern via convolutional neural network is

fully employed without pooling operation. It then integrates an

attention mechanism into bidirectional long short-term mem-

ory to acquire the weighted dynamic context between consec-

utive frames. Furthermore, dynamic environment estimation

and phase correction further improve the generalization ability.

Extensive experimental results on REVERB challenge demon-

strated that the proposed approach outperformed existing meth-

ods, improving PESQ from 2.56 to 2.87 and SRMR from 4.95

to 5.50 compared with conventional DNN.

Index Terms: environment-dependent, attention, convolutional

network, recurrent network, speech enhancement

1. Introduction

Speech enhancement is one of the corner stones for develop-

ment of robust automatic speech recognition and communica-

tion systems [1, 2]. Notably, the existing systems of speech

enhancement are often built by using data-driven approaches

based on large scale deep neural networks (DNNs) [3, 4]. How-

ever, its accuracy is limited by environment variability and con-

text variability, which result from the mismatch between train-

ing and test environments, as well as inadequate consideration

of contextual information in real speech respectively.

Great efforts have been made to alleviate these issues for

preserving real signals and reducing noises. Conventional sta-

tistical signal processing approaches, including multi-step lin-

ear prediction (MSLP) [5], weighted prediction error (WPE)

[6], etc., analyze the statistical characteristics of noise in var-

ious environments. They aim to estimate pattern of the noise

and find the way to suppress it. This statistical strategy is appli-

cable to changeable noise environment. However, preservation

of real signals is restricted by the strict distribution assumptions.

Recently, data-driven approaches have attracted more in-

terests and achieved better performance than conventional sta-

tistical approaches. They view the enhancement problem as

a regression one, where the nonlinear regression function is

* corresponding author.

parametrized by deep network, such as DNNs [3, 7], RNNs

[8, 9] and CNNs [10, 11]. For robustness improvement in var-

ied environments, simulated or real noise is augmented into the

network to enhance the generalization ability of the model [12].

However, such diverse contexts are not fully utilized to preserve

the real signal and varied environmental factors are not esti-

mated online for noise reduction.

To address above problems, we propose an end-to-end ro-

bust Attention-driven Network (ANet) and its environment-

dependent version EDANet. Specifically, ANet consists of

three components. The encoder-decoder convolutional com-

ponent exploits the local frequency-temporal context patterns

in the spectrogram. The attention-driven bidirectional recur-

rent component models different contribution from consecutive

frames as well as dynamic correlations between the contextual

frames. The final component is a fully-connected layer with

dropout layer that further reduces the noises and predicts the

clean spectrograms. To improve the generalization ability, we

introduce EDANet to better enhance speech signal as well as

WPE method to dynamically estimate the environment and cor-

rect speech phase corrupted by reverberation. The experiments

are verified based on REVERB challenge database [13]. The

results obtained from various experiment demonstrate that our

model achieves better performance than all the competitors.

2. Baseline Model

One priority choice for speech enhancement is DNN [12], as

presented in Fig. 1, which has been extensively explored in the

past few years. First, the DNN model is trained from a collec-

tion of noisy and clean speech represented by the log spectra

features. Then, the well-trained DNN model is fed with the fea-

tures of noisy speech for generation of the enhanced log spectra

features. Afterwards, the additional phase information from the

noisy speech is combined with the enhanced log spectra features

to reconstruct the new speech.

There are two main limitations of this model. First, it fails

to exploit the rich contextual patterns existing in spectrograms,

thereby hindering the recovery of real signals. Second, it ig-

nores noises and speech phase distortions caused by various en-

vironments, leading to great difficulty in noise removal.

3. Environment-Dependent
Attention-driven Neural Network

The proposed approach is presented to make improvement both

in signal preservation and noise reduction, as shown in Fig.

2. For signal preservation, Attention-driven Network (ANet)
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Figure 1: The diagram of DNN-based framework.
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Figure 2: The diagram of EDANet.

is designed to exploit more comprehensive contextual features

from the input spectrogram as shown in Fig. 3. The convo-

lutional component applies into the local temporal-frequency

context; the attention-driven bidirectional recurrent component

models the contributions of each frames and dynamic correla-

tions between the contextual frames. In terms of noise reduc-

tion, EDANet integrates the strategy of online environment es-

timation and phase correction. This suppresses different noise

patterns in various environments and greatly alleviates the phase

distortion caused by reverberation, aiming to achieve better per-

formance in noise reduction.

3.1. Basic attention-driven network (ANet) training

Formally, x ∈ R
d×t represents the noisy spectrogram and

y ∈ R
d×t represents its corresponding clean version, where

d is the dimension of each frame, i.e., number of frequency bins

in the spectrogram, and t is the spectrogram length. Given a

training set D = {(xi, yi)}
n
i=1 of the pairs of noisy and clean

spectrograms, the problem of speech enhancement is formal-

ized as finding a mapping gθ : Rd×t → R
d×t that maps a noisy

utterance to a clean one, where gθ is parameterized by θ. Then

the following optimization problem is solved for obtaining the

best model parameter θ:

θ̂ = argmin
θ

∑n

i=1
‖gθ(xi)− yi‖

2
F . (1)

Under this setting, ANet is designed as mapping function gθ for

enhancement. It is mainly made up by convolutional, recurrent

and full-connected components as shown in Fig. 3.

3.1.1. Encoder-decoder convolutional component

To exploit more accurate local context pattern from given spec-

trograms, the encoder-decoder CNN [14] is utilized in ANet.

The encoder blocks capture the entire context; while the de-

coder blocks recover details of the time-frequency structure in

the spectrogram. This structure enables the network to effi-

ciently model both long contexts and fine-grained structures

while maintaining the advantages of CNN [15].

Specifically, z ∈ R
b×w stands for a convolutional kernel of

size b × w. A feature map hl
z is defined as the convolution of

the spectrogram x with kernel z in the layer l of the encoder-

decoder CNN. It is followed by an elementwise nonlinear map-

ping σ : hl
z(x) = σ(hl−1

z (x) ∗ z) and h0
z (x) = x. Throughout

the paper, σ(a) = max{a, 0} is chosen as the rectified linear

function (ReLU), as its effectiveness in alleviation of the noto-

rious gradient vanishing problem has been extensively verified

in practice. Each of such convolutional kernel z produces a 2D

feature map, k is applied to separate convolutional kernels to

the input spectrogram, resulting in a collection of 2D feature

maps {hl
zj
(x)}kj=1.

It is worth pointing out in our convolutional component that

the pooling operations are removed due to the window size of

input spectral (e.g., 7 frames are set in this paper) is small and

the pooling operation will quickly reduce the width. Besides,

in order to recover the original speech signal, zero-padding op-

eration is applied to guarantee the final prediction of the model

have exactly the same length in the time dimension as the input

spectrogram.

3.1.2. Attention-driven bidirectional recurrent component

In the convolution operation, however, the same kernel is used

across the whole spectrogram, while the contribution from each

frame (and each frequency bin) often varies with its distance to

the current frame [16]. For speech enhancement task, not all

frames in a sequence are equally informative; and speech frag-

ments that are too quiet or noisy contribute little to the current

real signal. To incorporate these observations, we introduce the

Bidirectional Long Short-Term Memory (BLSTM) [17] with an

attention mechanism [18] into ANet. It aims to leverage upon

the memory structure capable of capturing some temporal con-

strains that are not fully utilized in the DNN architecture.

Specifically, the output of the convolutional component is a

collection of k feature maps {hl
zj
(x)}kj=1, h

l
zj

∈ R
p×t. Before

fed into attention-driven BLSTM, those maps are first vertically

concatenated into a 2D feature map:

H(x) =
[
h
l
z1
, h

l
z2
, . . . , h

l
zk

]
∈ R

pk×t
. (2)

At each time step t, given input Ht := Ht(x), the contribution

value αt of Ht to the target frame is calculated as

αt =
exp(Ht)∑t+(s−1)/2

i=t−(s−1)/2 exp(Hi)
, (3)

where s is the length of each segment. To further model the

dynamic correlations between weighted adjacent frames in the

noisy spectrogram, we feed the weighted adjacent frames, i.e.,

Ĥ(x) = αH(x), into the following BLSTM. Thus, the hidden

representation V(x) of target frames is generated as:

V(x) = BLSTM{Ĥ(x)} ∈ R
q×t

, (4)

3.1.3. Fully-connected and dropout component

To avoid the over-fitting problem and better reduce the useless

noises in the various scenes, we adopt a fully-connected layer

with dropout strategy for further improving the generalization

ability of our model. Formally, for each t, we have:

ŷ = max{0,WV(x) + bW } ∈ R
d×t

, (5)

where W ∈ R
d×q and bW ∈ R

d are the parameters. As shown

in Eq. (1), the last step is to define the mean-squared error be-

tween the predicted spectrogram ŷ and the clean one y, and to

optimize all parameters simultaneously. Specifically, AdaDelta

is used to ensure a stationary solution.
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Figure 3: The architecture of the proposed end-to-end basic Attention-driven Network (ANet) training.

3.2. EDANet training

The basic ANet training achieves effectiveness in signal preser-

vation and noise reduction. However, it is not able to deal

with mismatched conditions of the training and test environ-

ment. To enable this environment awareness, we further pro-

pose the EDANet. Dynamical estimation is conducted on the

environment information e ∈ R
d×t from the noisy spectrogram

x ∈ R
d×t. Then both x and e are fed into ANet for prediction

of the clean spectrogram y ∈ R
d×t. Thus, in the training stage,

Eq. (1) is transformed into the following optimization problem:

θ̂ = argmin
θ

∑n

i=1
‖gθ(xi, ei)− yi‖

2
F . (6)

Here, the online environment information e is estimated by

WPE method [6], because of its effectiveness in reverberation

estimation. In the enhancement stage, it is also used to online

estimate the speech phase φ. Further predicted amplitude ŷ is

combined to synthesize new speech signal. Thus, these two

steps contribute to noise reduction and phase correction.

Specifically, WPE assumes that the desired signal S is ob-

tained from the noise signal y through a linear filter G. It

follows a zero-mean complex Gaussian with variance λ as

NC(S; 0, λ). Through maximization of the log likelihood

L = max
G,λ

∏N

n=1
NC(S; 0, λ) = min

G,λ

∑N

n=1

|S|2

λ
+ log πλ,

The parameter G, λ and the desired signal S are obtained. Here,

the environment information e and corrected phase φ are calcu-

lated as follows:

e = S, φ = angle(S). (7)

4. Experiments

To evaluate the effectiveness of our approach, we tested it ex-

perimentally on the REVERB challenge dataset [13]. The RE-

VERB challenge dataset contained simulated and real utter-

ances; the training data only included simulated recordings. The

simulated and real recordings on test data were used for evalu-

ation. At the preprocessing, the audio signal was transformed

to frames using STFT with a frame length of 512, a frameshift

of 256 and the dimension of the log spectral feature vector at

257. The architecture of EDANet was described as follows: the

convolutional component consisted of 9 convolutional layers,

where the number of filters for each convolution layer was 4, 8,

16, 32, 64, 32, 16, 8 and 4 respectively; and the size of all filters

was fixed at 3×3. Two layers of BLSTMs following the convo-

lutional component were adopted, each with 300 hidden units.

The back-propagation algorithm was improved by the dropout

regularization, with the corruption level is 0.2. To measure the

enhancement quality, the PESQ [12] and SRMR [19] measure

were applied into evaluation of different models.

4.1. Effect of environment-dependent training

To evaluate the effectiveness of WPE in solving environment

variability, the environmental information data were modeled

and compared in different ways: 1) MSLP late: the entire late

reverberation data from MSLP method [5]; 2) MSLP audio:

the dereverberated audio from MSLP method; 3) WPE audio:

the dereverberated audio from WPE method.

Based on the comparison results, “WPE audio” achieved

the best performance among all the competitors in Table 1. It

proved the necessity and effectiveness of WPE method in envi-

ronment estimation. Specifically, “WPE audio” and “MSLP au-

dio” made the performance as good as that of “MSLP late”. In

other words, the derverberated audio better enhanced the gen-

eralization ability of model compared with reverberation esti-

mation only. In addition, “WPE audio” outperformed “MSLP

audio” in performance improvement by achieving higher qual-

ity speech dereverberation. Therefore, “WPE audio” as the

best choice for environment-dependent training, was selected to

model environment information for speech enhancement task.

Table 1: Results of DNN with different environment on the sim-

ulated data. The best result is highlighted in bold.

Environment
PESQ SRMR

Far Near Avg. Far Near Avg.

No (Baseline) [12] 2.42 2.69 2.56 4.34 4.87 4.61
MSLP late 2.42 2.70 2.56 4.38 5.30 4.84

MSLP audio 2.49 2.79 2.64 4.42 5.23 4.83
WPE audio 2.52 2.85 2.69 4.50 5.35 4.93

4.2. Effect of attention-driven network

To verify the effectiveness of the proposed attention-driven net-

work (ANet) in context information preservation, comparisons

with several network structures were conducted. The results

are summarized in Table 2, with conclusions detailed below:

1) BLSTM system significantly outperformed DNN system in

terms of PESQ and SRMR. To be more specific, compared with

conventional independent modeling of frame static context in

DNN system, the dynamic context modeling in both directions

could exploit richer context information to preserve the real

signal. 2) The encoder-decoder CNN with BLSTM (EDCNN-

BLSTM) made a better performance than BLSTM system, since

the former exploited local frequency-temporal context and com-

plemented dynamic temporal context for further speech en-

hancement. 3) The proposed EDCNN-Attn-BLSTM approach

achieved better results than EDCNN-BLSTM system. The pos-

sible explanation is that the attention mechanism enabled the

model to learn a better alignment between the input frames with

different contributions and the output target frame.
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Table 2: Results of different networks on the simulated data.

Network Structure
PESQ SRMR

Far Near Avg. Far Near Avg.

DNN (Baseline) [12] 2.42 2.69 2.56 4.34 4.87 4.61
BLSTM 2.53 2.89 2.71 4.58 4.95 4.77

EDCNN-BLSTM 2.57 2.95 2.76 4.70 4.97 4.84
EDCNN-Attn-BLSTM (ANet) 2.61 2.98 2.80 4.74 4.99 4.87

4.3. Results and discussion

Finally, the estimated environment information was integrated

into the attention-driven network. The results for the simulated

data are summed up in Table 3, while the comparison with the

real data is illustrated in Table 4. In the case of real data, only

SRMR measure is available for evaluation since PESQ measure

requires a reference or clean speech to evaluate.

It was observed that incorporating environment informa-

tion (i.e., WPE audio) allowed the ANet model to generate bet-

ter enhanced speech. The explanations are given from two as-

pects. First, various complementary contexts in noisy spectro-

gram were fully exploited to preserve the real signal. Second,

online environmental estimation improved the generalization to

reduce different noise. In addition, the proposed EDANet with

corrected phase (i.e., WPE phase) made better performance on

the simulated data and real data. It proved the alleviation of

phase distortion and speech enhancement by corrected phase.

Table 3: Results (PESQ and SRMR) for the simulated data.

Method
PESQ SRMR

Far Near Avg. Far Near Avg.

No process 2.16 2.59 2.38 3.46 3.96 3.71
MSLP [5] 2.14 2.53 2.34 3.04 3.32 3.18
WPE [6] 2.26 2.72 2.49 3.76 4.27 4.02

DNN (Baseline) [12] 2.42 2.69 2.56 4.34 4.87 4.61
BLSTM 2.53 2.89 2.71 4.58 4.95 4.77

EDCNN-Attn-BLSTM (ANet) 2.61 2.98 2.80 4.74 4.99 4.87
+ WPE audio 2.64 3.05 2.85 4.78 5.04 4.91

+ WPE audio + WPE phase (EDANet) 2.66 3.08 2.87 4.81 5.07 4.94

Table 4: Results (SRMR) for the real data.

Method
SRMR

Far Near Avg.

No process 3.19 3.17 3.18
MSLP [5] 3.04 3.19 3.07
WPE [6] 3.58 3.42 3.50

DNN (Baseline) [12] 4.97 4.92 4.95
BLSTM 5.28 5.07 5.18

EDCNN-Attn-BLSTM (ANet) 5.50 5.28 5.39
+WPE audio 5.56 5.36 5.46

+ WPE audio + WPE phase (EDANet) 5.59 5.40 5.50

To have a better understanding on the experimental results,

a case study was carried out by visualizing an utterance exam-

ple corrupted in reverberation environment. Fig. 4(a) and 4(b)

show the log magnitude spectrogram of the reverberant speech

and the clean speech. The corresponding DNN-enhanced out-

put is shown in Fig. 4(c). DNN approach achieved good results

in reducing the background noise and preserving the low fre-

quency part of the signal. Nevertheless, the approach tended

to suppress the high frequency part of the real signal. It may

explain the difficulty for the approach in overcoming perfor-

mance limitations in Table 3 and Table 4. Fig. 4(d) is the log

magnitude spectrogram from the enhanced speech using pro-

posed EDANet approach. Compared with Fig. 4(c), the high

frequency part of the spectrogram in Fig. 4(d) was better pre-
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(a) Reverberation speech
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(c) DNN enhanced speech
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(d) EDANet enhanced speech

Figure 4: Spectrograms of an utterance example.

served. Hence, EDANet exhibited its advantages in preserv-

ing high/low-frequency context information, thereby producing

better enhanced spectrogram for speech enhancement. Accord-

ing to our case study, although our proposed EDANet is effec-

tive in signal presevation, it does not lead to significant improve-

ment for noise suppression in silent segment as shown in Fig.

4(d). This explains the reason why SRMR score improvements

in near-field case are less than in far-field case in Table 3 and

Table 4. This should be explored in future work.

5. Conclusion

We proposed an end-to-end environment-dependent approach

EDANet for speech enhancement. Compared with the existing

methods, the proposed approach exhibited two distinctive fea-

tures. First, various context in spectrogram could be more com-

prehensively exploited to preserve the signal, including local

frequency-temporal context via encoder-decoder CNN struc-

ture, dynamic temporal context via BLSTM, as well as the con-

tribution from contextual frame via an attention mechanism.

Second, online environment estimation and phase correction

improve generalization and robustness. This enabled our model

could better remove noise in complex scenes. Extensive ex-

perimental results showed a superior performance of our new

approach on speech enhancement.
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