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Abstract—To improve the robustness of automatic speech
recognition (ASR), speech enhancement (SE) is often used as a
front-end noise-removal process. Although there is complemen-
tarity between the mapping-based and the mask-based SE system,
one of the SE systems has been conventionally used as the front-
end of ASR. We propose a spectrogram fusion (SF)-based end-
to-end (E2E) robust ASR system, in which the mapping-based
and masking-based SE are used as the front-end simultaneously.
We adopt SF to combine the advantages of mapping-based and
masking-based SE systems. SF and ASR modules are connected
in an E2E manner, and joint training is conducted to finetune
the front-end and the back-end. We compared the performance
of different front-ends after joint training. From the experiments
using Aishell and PNL 100 Nonspeech Sounds datasets, we found
that the fusion of two SEs are beneficial for ASR, especially under
low signal-to-noise ratio, where a relative improvement of more
than 7% is achieved.
Index Terms: robust automatic speech recognition, speech
enhancement, spectrograms fusion

I. INTRODUCTION

The performance of automatic speech recognition (ASR)
[1] in a clean environment is very high [2]. But when noise is
present, it will drop sharply [3]. For example, the word error
rate (WER) drops from 1% to over 80% as the signal-noise
ratio (SNR) transitions from clean to 0 dB [2]. To address
this problem, many approaches have been investigated. Speech
enhancement (SE) [4] is one of the approaches for improving
the performance of robust ASR [5], [6]. First, an SE front-
end is adopted to enhance the noisy speech signal, and then
the enhanced speech signal is input into the ASR back-end to
obtain the final recognition results [5], [7].

With increases in computing resources and available data,
deep learning-based SE [8], [9] systems have attracted con-
siderable attention. Because these systems have few, if any,
assumptions, they can often achieve better performance than
traditional SE systems [9], [10]. Mapping [9] and masking [11]
are two major targets for training deep learning-based systems.
Mapping-based SE systems [9], [11] use the strong nonlinear
mapping capabilities of deep neural networks to directly obtain
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the mapping relationship between noisy features and clean
features. On the other hand, masking-based SE systems [11],
[12] first use a deep neural network to obtain a mask between
the speech and the noisy speech. This mask is then used
to extract the clean speech features from the noisy features.
Although some studies have shown the complementarities
[13], [14] between the mapping-based and masking-based SE
systems, only one of them is still used as a front-end system
in ASR [15], [16].

Meanwhile, the ASR back-end has also adopted end-to-end
(E2E) models [17], [18] because of its conveniecnce. The joint
training of the front- and back-end can optimize the entire
pipeline [15], [19], [20]. Moreover, the joint training makes
front-end more suitable for ASR [19], [21]. This will also lead
to changes in the SE front-end [15] that were trained by mean
squared error or mean absolute error. However, there is no
work to explore the joint use of mapping-based and masking-
based SE front-ends.

In this paper, we propose a spectrograms fusion [22], [23]
(SF)-based E2E robust ASR system. The mapping-based and
masking-based SE are combined for the front-end. They are
connected to ASR in an E2E manner. Joint training [20],
[24], [25] is adopted to finetune the front-end and back-end.
Furthermore, we compare the performance of different front-
end systems after joint training, and domenstrate the effect of
joint training of mapping-based and masking-based front-end.

The remainder of this paper is structured as follows. Section
2 reviews the conventional systems. Section 3 presents the
proposed system. Then, we summarize the results of this study
in Section 4.

II. CONVENTIONAL APPROACHES

Currently, there are three major approaches for improving
the robustness of ASR: ASR training with noisy data, use of
mapping-based and masking-based SE.

A. ASR training with noisy data

One straightforward way of improving the robustness of
ASR performance is training with noisy data. Although this



approach can boost the robustness of ASR to some degree, the
complexity and computing costs are also increased. Addition-
ally, when the training data are mismatched with the test data,
the system performance will be greatly reduced. A flowchart
of the approach is shown in Fig. 1(a).

B. ASR with mapping-based SE

Mapping-based SE systems use the strong nonlinear map-
ping capabilities of deep neural networks to directly obtain
the mapping relationship between noisy features and clean
features. The loss is defined as follows:

LMapping =
1

TF

∑
|||X̃| − |X|||2F (1)

where T and F represent the time and frequency, respectively,
|X̃| is the mapping-based speech magnitude spectrogram, and
|X| is the target clean speech magnitude spectrogram. With the
mapping-based front-end, the ASR system uses the enhanced
features as the input for the recognition process. A flowchart
of this approach is shown in Fig. 1(b).

C. ASR with masking-based SE

Masking-based SE systems aim to use deep neural networks
to obtain a mask between the speech and the noisy speech.
This mask is intended to enable the extraction of speech
signals from the noisy speech signals. The loss is defined as
follows:

LMasking =
1

TF

∑
||M̃ � |Y | − |X|||2F

=
1

TF

∑
|||Ẍ| − |X|||2F

(2)

where M̃ is the estimated mask, Ẍ is the masking-based
speech magnitude spectrogram, |Y | is the noisy input mag-
nitude spectrogram, and � denotes point-wise matrix multi-
plication. With the masking-based front-end, the ASR system
uses the enhanced features as the input for the recognition
process. A flowchart of this approach is shown in Fig. 1(c).

III. PROPOSED APPROACH

Our proposed SF-based E2E robust ASR method is com-
posed of three modules: an enhancement module, a fusion
module, and a recognition module. A flowchart of the pro-
posed approach is shown in Fig. 1(d).

A. Enhancement module

To obtain mapping- and masking-based spectrograms simul-
taneously, we train the enhancement module in a multi-target
learning manner:

LSE = αLMapping + (1− α)LMasking (3)
Here, α is a hyperparameter for adjusting the loss from the
two outputs.

B. Fusion module

SF [23] is an effective approach for exploiting the comple-
mentarities between mapping- and masking-based SE systems.
It fuses the T-F bins from the mapping and masking spectro-
grams that are closest to the true labels to a single spectrogram.
We use a deep neural network to estimate the minimum

Fig. 1. Overview of robust ASR systems.

difference masks (MDMs) between X̃ and Ẍ [23]. The labels
to train the MDM estimator are obtained from the enhanced
and clean spectrogram. By comparing the Euclidean distance
between the two spectrograms and the clean spectrogram,
we set the corresponding MDM with a closer distance to 1,
otherwise 0. Thus, each enhanced magnitude spectrogram has
a corresponding MDM for each T-F bin, which gives a smaller
absolute distance from the target magnitude spectrograms. In
this paper, M̃DM and ¨MDM are used to extract the better
parts of X̃ and Ẍ , respectively.

Because the spectrogram is continuous, the MDMs in the
testing stage are real values in (0, 1). The loss is defined as
follows:

LSF =
1

TF

∑
i

||M̃DMi −MDMi||2F (4)

After predicting the MDMs, nonlinear selection and fusion
processing are conducted to obtain the fusion speech magni-
tude spectrogram:

X̂ = M̃DM � X̃ + ¨MDM � Ẍ (5)



C. Recognition module

A speech transformer [17] with self-attention [26] is used
for the E2E ASR component. Except for the different input
features, the structure of the model is not changed. We use
Fbank as the input feature of the recognition module. We can
easily obtain Fbank from the enhanced features using the log
Mel filterbank. Based on the cross-entropy criterion, the loss
function of ASR is defined as follows:

LASR = −lnP (S∗|X̂) (6)
where S∗ is the ground-truth of the whole sequence of output
labels.

D. Joint training

We propose a robust E2E ASR system that transforms
noisy speech signals into text using a single network. The
SE networks, the SF network, and ASR based on speech
transformer are implemented with a single neural network.
The parameters are updated by the stochastic gradient descent.
SE, SF and ASR network are finetuned with joint training. The
loss function of the joint training is defined as follows:

LJoint = βLASR + (1− β)LSE + γLSF (7)
The hyperparameter β, γ control the loss between LASR, LSF

and LSE .

IV. EXPERIMENTAL EVALUATIONS

The enhancement module has three bidirectional long short-
term memory (BLSTM) hidden layers, each having 512 nodes.
The input and output were both 257-dimensional magnitude
spectrograms. We used a short-time Fourier transform with a
32-ms Hamming window and a 16-ms window shift to ob-
tain the 257-dimensional magnitude spectrograms for feature
extraction. The Fbank was 80-dimensional. This module was
trained in a multi-target learning manner to obtain mapping-
and masking-based SE systems. The fusion module has three
fully connected layers, with each hidden layer having 512
nodes. The input can be noisy, mapping-based, and masking-
based magnitude spectrograms. Moreover, the output has two
MDMs and two enhanced spectrograms. For the recognition
module, we used the speech transformer with self-attention,
under the same settings as described in [27]. Specifically, we
used six self-attention blocks as encoders and six self-attention
blocks as the prediction network. For each module, we per-
formed pre-training. For pre-training enhancement module and
fusion module, we used the data described in Section 3.1. For
pre-training the recognition module, we used the clean data.
The hyperparameter α was set to 0.5, the hyperparameter β
was set to 1, and the hyperparameter γ was set to 0, meaning
the ASR loss is primarily used. All model training ran for 60
epochs.

A. Dataset

We used the Aishell ASR corpus [28] and the PNL 100
Nonspeech dataset 1 to synthesize the experimental dataset.

1http://web.cse.ohio-state.edu/pnl/corpus/HuNonspeech/
HuCorpus.html

For the training set, we randomly selected 70 kinds of noise
and randomly synthesized the training set from the Aishell
corpus with SNR values of 0, 5, 10, 15, and 20. We did not
use the development set to tune or select the system. On the
other hand, we used the development and the test set from
the Aishell corpus to synthesize the test sets. For test set 1,
we randomly selected 15 kinds of noise, different from those
in the training set, and the whole development set from the
Aishell corpus with same SNR values as training set. For test
set 2, we used the remaining 15 kinds of noise and randomly
synthesized the test set from the Aishell corpus according to
SNR values of −5, 2.5, 7.5, 12.5, and 17.5. In summary, test
set 1 contained some unknown noise, while all kinds of noise
of test set 2 was unknown.

B. Evaluation metrics

We evaluated the performance of SE and ASR separately.
To evaluate the performance of SE, we used the following
evaluation metrics: Signal distortion (Csig) [29], background
intrusiveness (Cbak) [29], overall quality (Covl) [29], percep-
tual evaluation of speech quality (PESQ). For the ASR back-
end, we used the character error rate (CER) as an evaluation
metric.

C. Model abbreviation

In the following discussion, “Mapping separate”, “Mask-
ing separate”, and “Fusion separate” denote the systems
that directly used pre-trained modules without joint training.
“Noisy”, “Mapping Joint”, and “Masking Joint” denote con-
ventional systems with joint training, as described in Section
2. “Fusion Joint” denotes our proposed system with joint
training, as described in Section 3. “Fusion Joint Mapping”
and “Fusion Joint Masking” denote two outputs after en-
hancement module of “Fusion Joint”.

Fig. 2. Spectrograms of different SE systems: SNR is 15.



TABLE I
THE PERFORMANCE OF SE IN THE TEST SETS.

Systems Test set 1 Test set 2
Csig Cbak Covl PESQ Csig Cbak Covl PESQ

Original noisy 2.800 2.642 2.115 1.499 2.365 2.280 1.827 1.408
Mapping separate 3.456 1.817 2.734 2.040 2.805 1.595 2.187 1.646
Masking separate 3.092 1.664 2.428 1.830 2.552 1.498 1.999 1.549
Fusion separate 3.568 1.825 2.799 2.065 2.868 1.583 2.215 1.650
Mapping Joint 1.243 1.191 1.133 1.149 1.124 1.211 1.084 1.165
Masking Joint 2.737 1.487 2.070 1.481 2.290 1.412 1.786 1.404

Fusion Joint Mapping 1.531 1.251 1.207 1.074 1.496 1.277 1.210 1.098
Fusion Joint Masking 2.634 1.462 2.033 1.521 2.116 1.325 1.688 1.407

Fusion Joint 1.053 1.091 1.024 1.083 1.011 1.080 1.014 1.124

TABLE II
CER RESULTS (%) OF DIFFERENT E2E SYSTEMS WITH TEST SET 1: THE SNRS OF THE TEST SET ARE KNOWN; THE NOISE OF THE TEST SET IS

UNKNOWN.

β System CER Results(%) on Test Set 1 (Seen SNRs, Unseen Noise)
20dB 15dB 10dB 5dB 0dB AVG.

-

Noisy 12.51 14.60 17.31 24.62 39.65 21.78
Mapping separate 14.58 19.40 29.33 51.65 81.14 39.32
Masking separate 19.96 33.22 53.33 83.04 111.28 60.27
Fusion separate 13.34 18.74 29.69 55.14 89.79 41.45

0.5
Mapping Joint 11.67 12.97 16.37 25.49 43.63 22.08
Masking Joint 10.18 11.56 13.94 20.17 36.39 18.49
Fusion Joint 9.82 11.59 15.43 26.76 49.89 22.76

1
Mapping Joint 11.08 12.33 15.58 22.83 40.21 20.45
Masking Joint 9.83 11.38 13.78 20.18 36.05 18.29
Fusion Joint 9.77 11.00 12.93 19.04 33.45 17.28

TABLE III
CER RESULTS (%) OF DIFFERENT E2E SYSTEMS WITH TEST SET 2: BOTH THE SNRS AND THE NOISE OF THE TEST SET ARE UNKNOWN.

β System CER Results(%) on Test Set 1 (Unseen SNRs, Unseen Noise)
17.5dB 12.5dB 7.5dB 2.5dB -5dB AVG.

-

Noisy 20.31 24.54 30.45 45.41 76.66 39.99
Mapping separate 25.14 35.75 58.11 91.47 125.36 68.43
Masking separate 31.13 48.81 78.56 113.53 157.40 87.42
Fusion separate 23.77 36.33 61.57 97.53 139.44 73.13

0.5
Mapping Joint 16.53 20.71 30.96 54.86 102.55 45.93
Masking Joint 14.19 17.10 23.77 38.03 83.29 35.81
Fusion Joint 14.86 19.88 33.26 57.94 106.59 47.40

1
Mapping Joint 16.41 19.63 27.87 45.70 96.42 41.85
Masking Joint 14.04 16.68 24.01 37.69 75.91 34.18
Fusion Joint 13.75 16.75 23.03 36.81 73.86 33.34

D. Impact of SF-based ASR without joint training

Comparing the spectrograms in Figure 2, we find that
“Mapping separate” retains some non-speech components as
speech, and “Masking separate” causes loss of informa-
tion; “Fusion separate” was similar to “Mapping separate”,
but some high-frequency information is lost. Although “Fu-
sion separate” achieves the best performance in SE tasks,
“Mapping separate” achieves better performance on ASR. The
ASR back-ends of “Mapping separate”, “Masking separate”,
and “Fusion separate” are all trained on clean data. Comparing
the results of Table 2 and Table 3, high SNR is beneficial to
the “Fusion separate”. However, when the SNR is low, the
poor recognition performance of “Masking separate” affects
the “Fusion separate”. The performance of the fusion system
is between the two fused systems.

E. Impact of SF-based ASR with joint training

Joint training has different effects on “Fusion Joint”, “Map-
ping Joint” and “Masking Joint”. From Figure 2 we find that
“Masking Joint” restores the previously lost information with

blurred speech information . “Mapping Joint” will introduce
a lot of new noise, but the energy of the speech is very
obvious. During joint training with β=1.0, the system did
not introduce enhanced loss. So the mapping module did
not work for enhancement but became a part of recognition
network. On the other hand, the masking module still works
for enhancement because of the architecture of masking. It
provides better enhanced spectrogram.

In “Fusion Joint”, the fusion module fuses
“Fusion Joint Masking” and “Fusion Joint Masking”.
“Fusion Joint Masking” restores spectrogram from “Noisy
Speech”. The loss in speech signal “Fusion Joint Mapping”
becomes serious, as it does no longer work for enhancement,
but focuses on feature extraction for recogition.

The ASR performance of the systems obtained by using
joint training is greatly improved. We explored whether it is
necessary to introduce an enhancement loss (β = 0.5) during
joint training. The results indicate that it does not improve
the ASR performance, but instead dramatically degrades it.
We compared the two parts of the loss and found that the



enhancement loss is larger than the ASR loss, which may
affect the convergence of the ASR part. With β set to 1, the
recognition rate constantly improved as the SNR improves.
“Fusion Joint” gives improved results in almost all cases,
especially when the SNR is low. In the case of 0 dB SNR,
“Fusion Joint” gives a relative improvement of more than 7%
compared with “Masking Joint”, and close to 17% compared
with “Mapping Joint”. This shows that leveraging the comple-
mentarities between mapping- and masking-based SE systems
is effective for robust ASR, especially when the noise is large
(i.e., low SNR).

When the noise and SNR are both unknown, the perfor-
mance of “Fusion Joint” is improved compared with “Map-
ping Joint” and “Masking Joint”, though the improvement is
not large. This may be because “Fusion Joint” benefits from
better enhancement systems. Improving robustness of deep-
learning-based SE for unseen noise is important.

V. CONCLUSIONS AND FUTURE WORK

We proposed an SF-based E2E robust ASR system. From a
series of experiments, we showed that the joint training is very
important for robust ASR. Joint training had different effect
on front-ends; masking-based front-end blurs some speech
details and mapping-based front-end introduces some noise,
but the energy of the speech are kept. Fusion-based front-
end will highlight the low-frequency and some high-frequency
components. The introduction of a front-end gives only a slight
improvement, and may even degrade the performance. This
was solved by SF, which improves the performance of robust
ASR at low SNRs. The proposed SF-based E2E ASR system
demonstrates that the combination of mapping- and masking-
based front-ends improves the robustness of ASR. In future
work, we will examine more fusion approaches to improve
the robustness of ASR.
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