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ABSTRACT

Spectrograms fusion is an effective method for incorporating
complementary speech dereverberation systems. Previous
linear spectrograms fusion by averaging multiple spectro-
grams shows outstanding performance. However, various
systems with different features cannot apply this simple
method. In this study, we design the minimum difference
masks (MDMs) to classify the time-frequency (T-F) bins in
spectrograms according to the nearest distances from labels.
Then, we propose a two-stage nonlinear spectrograms fusion
system for speech dereverberation. First, we conduct a multi-
target learning-based speech dereverberation front-end model
to get spectrograms simultaneously. Then, MDMs are esti-
mated to take the best parts of different spectrograms. We are
using spectrograms in the first stage and MDMs in the second
stage to recombine T-F bins. The experiments on the RE-
VERB challenge show that a strong feature complementarity
between spectrograms and MDMs. Moreover, the proposed
framework can consistently and significantly improve PESQ
and SRMR, both real and simulated data, e.g., an average
PESQ gain of 0.1 in all simulated data and an average SRMR
gain of 1.22 in all real data.

Index Terms— speech dereverberation, spectrograms fu-
sion, multi-target learning, two-stage, deep learning

1. INTRODUCTION

In real life, speech is always disturbed by various reverbera-
tions, especially in confined indoor spaces [1]. The echo can
reduce the clarity and intelligibility of speech and seriously
affect people’s hearing experience. Speech dereverberation
provides preprocessing for speech recognition [2, 3, 4], sound
source localization, and speaker identification [5].

Recently, supervised deep dereverberation methods [6, 7]
have shown powerful capability and achieve better perfor-
mances than the traditional ways in speech de-reverberation.

*Corresponding author.

These supervised deep dereverberation methods can be cate-
gorized into two groups according to the learning targets, i.e.,
masking targets and mapping targets [7]. Masking targets
[7, 8, 9] describe the time-frequency relationships of clean
speech to background interference, while mapping [6, 7, 10,
11] targets correspond to the spectral representations of clean
speech [7, 8].

Based on these two kinds of learning targets, people more
explore the improvement of the neural network model [12, 13]
or add more information to the network [14], but do not fur-
ther explore the deeper relationship between the two kinds of
learning targets. Spectrograms fusion is an effective method
for incorporating complementary information from these two
types of speech dereverberation systems. However, there are
two challenges to build a spectrograms fusion system. The
first is the nonlinear nature of real scenarios. Although previ-
ous linear fusion by averaging spectrograms shows good per-
formances [13], it can not fuse various systems with different
patterns by simple linear processing. The second is that it is
unrealistic to build massive systems for fusion.

To overcome these problems, we design a nonlinear spec-
trograms fusion system for speech dereverberation. Many
systems are now training according to the mean squared error
(MSE) criterion, and this motivates us. If the time-frequency
(T-F) bins close to the clean spectrogram in the enhanced
spectrograms are fused back into a spectrogram, it may be
helpful for enhancement:

1. In the first stage, we use multi-target learning (MTL)
with both masking and mapping following [15, 13, 16] to ob-
tain different learning targets spectrograms, instead of con-
structing various systems with a large number of resources.

2. For nonlinear spectrograms fusion, we design the min-
imum difference masks (MDMs) to classify T-F bins, which
are nearest to the labels in spectrograms. In the second stage,
the MDMs are estimated using deep neural networks (DNN)
to take the best parts of the different spectrograms. We use
spectrograms in the first stage and MDMs in the second stage
to recombine spectrograms into one spectrogram.
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The rest of this paper is organized as follows. Section 2,
and 3 describe our proposed method. Section 4 gives the data
description and experiment evaluations. Section 5 gives the
conclusion and future work.

2. MULTI-TARGET LEARNING AND LINEAR
FUSION

The idea of MTL [17, 13] is to learn the different targets in
one model. In this study, mapping and masking targets are
learned in one single Bi-LSTM (Bi-directional Long Short-
Term Memory) model with two outputs:

LMTL = LDM + αLSA (1)
where α is the weight coefficient of the two mean squared
error (MSE) [18] items corresponding to the dual outputs of
Bi-LSTM. The DM is the proposed direct mapping target [10,
11], uses a linear output layer and MSE loss function:

LDM =
∑
t,f

(spcDM (t, f)− spcc(t, f))
2 (2)

where t and f denote time and frequency, respectively.
spcDM and spcc are the estimated spectrogram and the
reference clean spectrogram, respectively. The SA is the
abbreviation of the second learning target, which is called
signal approximation [12, 19]. It trains a ratio mask estimator
that minimizes the difference between the spectrogram of
clean speech and that of estimated speech:
LSA =

∑
t,f

(spcr(t, f) ∗maskSA(t, f)− spcc(t, f))
2

(3)

where spcr denotes the reverb spectrogram and maskSA is
the estimated mask. We denote the DM outputs and SA out-
puts of MTL as MT-DM and MT-SA, respectively. These es-
timated spectrograms could be combined via a simple average
operation to post-processing [13], called linear spectrograms
fusion:

spcMT−LF =
1

2
(spcMT−DM + spcMT−SA) (4)

where spcMT−LF denotes the linear fusion spectrogram.
spcMT−DM and spcMT−SA are two enhanced spectrograms.
We abbreviate the linear fusion approach as MT-LF.

3. NONLINEAR SPECTROGRAMS FUSION WITH
MINIMUM DIFFERENCE MASKS ESTIMATION

We design a set of masks, called minimum difference masks
(MDMs). Each MDM corresponds to an enhanced spectro-
gram. We use a nonlinear system to fuse T-F bins nearest to
the labels in multiple spectrograms into one spectrogram may
be better than using linear methods.

3.1. Minimum Difference Masks
We define the distance between each enhanced T-F bin and its
corresponding label as di:

di(t, f) = |spci(t, f)− spcc(t, f)| , i ∈ {MT−DM ,MT−SA } (5)

where spci denotes an enhanced spectrogram from the MTL
model. The i in this study is MT−DM or MT−SA. The labels
of MDMs are defined as:

M̃DM i(t, f) =

{
1, i = argmin

i
di(t, f)

0, otherwise
(6)

When di(t, f) is minimum, set M̃DM i(t, f) to value 1 and
0 otherwise. With labels, MDMs estimation can be treated
as a supervised problem. Considering the continuity of the
spectrogram, MDMs are real values in (0, 1) in testing. Fig.
1 shows the process of computing labels of MDMs.

spci

spcMT-DM

spcMT-SA

spcc

argmin|spci-spcc|
i

Clean speech 

(reference)

~

MT DMMDM -

~

MT SAMDM -

i

Fig. 1. The process of computing labels of MDMs: spcc is
clean spectrogram, spci are enhanced spectrograms from the
first stage, M̃DM i are labels of MDMs.

3.2. Nonlinear Spectrograms Fusion
Nonlinear spectrograms fusion consists of two stages. In the
first stage, an MTL based speech de-reverberation front-end
model is conducted to get spectrograms of different targets,
using loss function Eq. (1). Then an MTL for DNN based
back-end model is trained to predict MDMs. Consideration
of features complementarity [15, 13], two learning targets are
conducted. Estimation MDMs only, and estimation MDMs
with spectrograms:

LMDM−2O =
∑
i

∑
t,f

(
MDMi(t, f)− M̃DM i(t, f)

)2
(7)

LMDM−4O = LMDM−2O + α (LDM + LSA) (8)

where M̃DM i denotes the labels of MDMs while MDMi

denotes estimated MDMs. We abbreviate the models trained
using Eq. (7) as MDM-2O while MDM-4O using Eq. (8).
In the testing stage, nonlinear selection processing is con-
ducted:

selecti(t, f) =MDMi(t, f) ∗ spci(t, f) (9)
where selecti denotes nonlinear selected portion in spci. Fi-
nally, we recombine each selected portion to gain the final
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enhanced spectrograms:
spcfusion =

∑
i

selecti (10)

where spcfusion denotes the final nonlinear fusion spectro-
gram. Fig. 2 shows the training and testing processing in the
second stage.
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Fig. 2. Nonlinear spectrogram fusion system: spcr is rever-
berant spectrogram, spci are enhanced spectrograms in the
first stage, MDMi are estimated MDMs and selecti is se-
lected portion in spci.

4. EXPERIMENTS

The experiments were conducted on the REVERB challenge
task [20]. The REVERB challenge dataset contained simu-
lated and real utterances; the training data only included sim-
ulated recordings. The simulated and real recordings on test
data were used for evaluation. The speech signals were sam-
pled to 16kHz. The frame length and shift were set to 512
and 256, respectively. The input and output features were
both magnitudes of spectrograms for the whole utterance.

All networks were implemented based on TensorFlow.
In the first stage, the Bi-LSTM model consisted of the 257-
dimensional input layer, two hidden layers with 1024 nodes
for each layer, and the 257-dimensional output layer for
both mapping and masking target. In the second stage, the
DNN model consisted of the 771-dimensional input layer,
two hidden layers with 1024 nodes for each layer, and the
257-dimensional output layer for both two (MDM-2O) or
(MDM-4O) four outputs. The model’s parameters were ran-
domly initialized. A validation set was adopted to control the
learning rate (initialized as 0.01), which was decreased by
50% when no improvement between two consecutive epochs.
Besides, the performance in the validation set was decided

whether to save the trained model in one epoch. Each back-
propagation through time (BPTT) or back-propagation (BP)
batch contained eight utterances. α for multi-target learning
both in the first stage and second stage were set to 1.

Table 1. PESQ and SRMR results for simulated data.

Models PESQ SRMR
Far Near Avg. Far Near Avg.

Reverb 2.15 2.59 2.37 3.43 3.94 3.68
DM 2.58 2.88 2.73 4.39 4.88 4.64
SA 2.54 2.93 2.74 4.48 4.92 4.70

MT-DM 2.56 2.90 2.73 4.42 4.92 4.67
MT-SA 2.60 3.01 2.81 4.64 4.97 4.80
MT-LF 2.64 3.02 2.83 4.58 4.99 4.78

MDM-2O(B) 2.56 2.92 2.74 4.38 4.54 4.46
MDM-2O 2.65 3.06 2.86 4.59 4.96 4.78

MDM-4O(B) 2.66 3.09 2.87 4.61 5.02 4.81
MDM-4O 2.71 3.14 2.93 5.09 5.60 5.35

Table 2. SRMR results in real data.

Models SRMR
Far Near Avg.

Reverb 3.187 3.171 3.179
DM 3.291 2.926 3.109
SA 3.657 3.535 3.596

MT-DM 3.707 3.586 3.647
MT-SA 3.852 3.669 3.761
MT-LF 3.842 3.699 3.771

MDM-2O(B) 3.686 3.512 3.599
MDM-2O 3.931 3.767 3.849

MDM-4O(B) 3.956 3.815 3.885
MDM-4O 5.055 4.927 4.991

4.1. Experiments on Multi-target Learning and Linear
Fusion

Table 1 shows the perceptual evaluation of speech quality
(PESQ) [21] and the speech-to-reverberation modulation en-
ergy ratio (SRMR) [22] performance on simulated data sets,
and Table 2 shows the SRMR performance on real data sets.
“Reverb” denotes the reverb speech. “DM” and “SA” denote
the mapping and the masking approach using Eq. (2) and Eq.
(3) separately. “MT-DM” and “MT-SA” denote two outputs
of the MTL approach using Eq. (1). “MT-LF” denotes linear
fusion spectrograms using Eq. (4). All the baseline mod-
els consisted of the 257-dimensional input layer, two hidden
layers with 1024 nodes for each layer. Several observations
could be made from results.

1. First, for the PESQ measure, the DM approach yielded
better results than the SA approach in the far-field, while the
near field is the opposite.
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2. Second, for the SRMR measure, the SA approach con-
sistently outperformed the DM approach. In contrast, the DM
approach generated the worst performance.

3. Third, each output of the MTL approach, MT-DM
approach, and MT-SA approach, is the most direct way to
demonstrate the complementarity of different learning tar-
gets. Accordingly, the PESQ and SRMR measures were
improved, overusing one single target learning model.

4. Besides, one of the MTL model outputs was consis-
tently superior to another; the MT-SA approach had a better
performance than the MT-DM approach.

5. Finally, linear spectrograms fusion was helpful for
speech dereverberation, although SRMR had some degrada-
tion in the far-field.

4.2. Experiments on Nonlinear Spectrograms Fusion

The fusion approaches, using Eq. (7) and Eq. (8) training
models are compared both in the far-field and near-field. The
training methods of “MDM-2O(B)” and “MDM-2O” are the
same. However, in the fusion, “MDM-2O(B)” restores the
predicted result to 0-1 value in binary masks, while “MDM-
2O” uses the predicted probability in real value masks. The
same as “MDM-4O(B)” and “MDM-4O”. The results at the
bottom of Table1 and Table2 shown that real masks worked
better than binary masks, indicating that soft masks are more
suitable than hard masks. Moreover, the MDM-4O approach
showed its superiority in all PESQ and SRMR. This result
suggests that there is an active feature complimentary be-
tween spectrograms and MDMs.

Compared with the MT-LF approach, most nonlinear
spectrograms fusion approaches, except the MDM-2O(B) ap-
proach, showed superb effects. Using binary masks to fuse
spectrograms may cause the loss of time-varying information
in the spectrogram, which may be one of the reasons for the
poor performance of the MDM-2O(B) approach. MDM-2O
and MDM-4O(B) got a more smooth improvement in PESQ
and SRMR. In contrast, MDM-4O got a remarkable improve-
ment in PESQ and SRMR, both real and simulated data, e.g.,
an average PESQ gain of 0.1 in all simulated data and an av-
erage SRMR gain of 1.22 in all real data. The success of the
MDM-4O approach inspired us to use MDMs as an auxiliary
feature to predict a spectrogram or mask in future work.

Fig. 3 shows the magnitude spectrograms 1. Several ob-
servations could be made from Fig. 3.

1. First, two enhancement approaches achieved excellent
results in reducing the reverberation and restoring the spec-
trum at low frequencies buried under reverberation.

2. Second, interference usually comes from high frequen-
cies, the MDM-4O approach had an excellent ability to sup-
press high-frequency interference.

Considering that we used utterance-level features to train
the model in this study, as a comparative experiment, the
frame-level features with frame expansion will be explored

1The audio samples are at https://paperdemo.github.io/icassp2020.html

to train the model in future work. Moreover, our method has
the potential to be extended to multi-system fusion.

(a) Clean (b) Reverberant

(c) MT-LF (d) MDM-4O

Fig. 3. Magnitude spectrograms from speech (a) clean, (b)
reverberant, (c) enhanced with linear fusion and (d) enhanced
with nonlinear fusion.

5. CONCLUSION

We proposed a nonlinear spectrograms fusion with minimum
difference masks estimation system for speech dereverber-
ation. First, a multi-target learning Bi-LSTM based speech
dereverberation front-end was conducted to obtain different
learning targets spectrograms. Then, MDMs were estimated
to classify T-F bins nearest to the labels. Finally, we used
spectrograms from the first stage and MDMs from the second
stage to fuse the best parts of spectrograms. We observed
an active feature complementarity between spectrograms and
minimum difference masks (MDMs) when using multi-target
learning. By Nonlinear spectrograms fusion, speech dere-
verberation mainly improved both the speech quality and
speech-to-reverberation modulation energy ratio, e.g., an av-
erage PESQ gain of 0.1 in all simulated data and an average
SRMR gain of 1.22 in real data. In future studies, we will an-
alyze the spectrogram and use the time-varying information
in the spectrogram for fusion. Moreover, feature fusions for
other speech tasks will also be explored, such as MFCC, for
automatic speech recognition.
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