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ABSTRACT

This study investigates the effective finetuning of a pretrained
model using adapters for speech emotion recognition (SER).
Since emotion is related with linguistic and prosodic infor-
mation and also other attributes such as gender and speak-
ing style, a framework of multi-task learning (MTL) has been
shown to be effective for SER. However, the learning targets
of automatic speech recognition (ASR) and other attribute
recognition are apparently in conflict. Therefore, we propose
to employ different adaptation methods for different tasks in
multiple finetuning stages. Since ASR is the most challeng-
ing and also influential for SER, in the first stage, we fine-
tune all parameters of the pretrained model for ASR and SER.
In the second stage, we incorporate adapters to finetune the
model for gender and style recognition in addition to SER
by freezing the parameters of the main Transformer model
tuned for ASR. Experimental evaluations which extensively
compare different adaptation methods using the IEMOCAP
dataset demonstrate that the proposed approach achieves a
significant improvement from the simple MTL.

Index Terms— Speech emotion recognition (SER), pre-
trained model, multi-task learning (MTL), adapters

1. INTRODUCTION

With the continuous development of artificial intelligence, the
utilization of speech in human-computer interaction (HCI) is
becoming increasingly prevalent. With its potential to pro-
mote natural and user-friendly HCI, speech emotion recogni-
tion (SER) has emerged as a significant research area, enhanc-
ing the overall user experience across various applications.
Consequently, this research has garnered increasing attention.

In earlier studies, researchers have employed convolu-
tional neural networks (CNNs) [1, 2] and recurrent neural
networks (RNNs) [3] to derive emotional features from in-
put speech or spectrogram. However, the available train-
ing data in existing emotional speech datasets are not suffi-
cient enough to train large models using supervised learning.
Transfer learning poses a promising solution to address the
data scarcity challenge. In recent years, researchers have
explored the utilization of large pretrained models based on

self-supervised learning (SSL) such as wav2vec 2.0 [4] for
speech processing tasks, including low-resource automatic
speech recognition (ASR) [5] and speaker recognition [6].
The model is pretrained on huge amounts of unlabeled data
in self-supervised manner to capture both acoustic and lin-
guistic information, and can subsequently be finetuned on
limited labeled data for the target task. In the initial work
of using wav2vec 2.0 for SER, Pepino et al. [7] showed the
superior performance of the pretrained model compared with
traditional deep learning approaches.

Since the linguistic and acoustic information have a great
impact on emotion expression, multi-task learning (MTL) has
been widely used by jointly training the model with auxiliary
emotional-related tasks [8, 9]. The shared information across
tasks can enhance the model to capture relevant emotional
features and boost SER performance. Parthasarathy et al. [10]
proposed to jointly learn the arousal, dominance, and valence
information. They found that joint training of the model with
multiple emotional attributes can largely enhance the perfor-
mance. Cai et al. [11] proposed an MTL approach of ASR
and SER based on the wav2vec 2.0 model. They showed that
the joint training with ASR to learn the linguistic information
led to better performance of SER.

We hypothesize that one of the main optimization chal-
lenges of traditional MTL framework arises from conflicting
gradients [12], such as when the learning targets of SER and
auxiliary tasks have high positive curvature. For example, it is
expected that ASR requires high-level features independent of
gender and speaking style information, which are in conflict
with classification of these attributes. To address the prob-
lem, we have proposed a two-stage finetuning method [13],
which finetunes the model for different tasks stage by stage.
However, this method shifts all parameters of the model for
different tasks in the end, thus does not completely solve the
gradient-conflict problem. In this study, therefore, we propose
to adopt different adaptation methods for different tasks in
multiple stages. Specifically, we introduce adapters for gen-
der and speaking style recognition (acted vs. spontaneous) in
addition to SER in the second stage after we finetune all pa-
rameters for ASR and SER. We conduct comprehensive eval-
uations of the adaptation methods and show the superiority of
the proposed method.
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Fig. 1. Network structure of the proposed two-stage finetuning method. The XLS-R model is finetuned in the first stage, then
we freeze the Transformer encoder and train adapters in the second stage.

2. FINETUNING PRETRAINED MODEL FOR SER

2.1. Single-stage finetuning with MTL

We first finetune a pretrained model for domain adaptation.
To enrich the feature learning, we combine the auxiliary tasks
and adopt an MTL framework. For an input waveform U ,
we extract the output of the last Transformer layer f ∈ Rt×d

as the latent feature, where t is the length of the utterance,
and d denotes the hidden dimension of the Transformer layer.
We learn the latent feature xASR with a fully-connected layer
(FC layer) and apply the connectionist temporal classifica-
tion (CTC) loss function for ASR. For emotion, gender, and
speaking style recognition, we apply mean-pooling to the
time dimension of f followed by a fully-connected layer
(FC layer) for each specific task. And the output features
x<e,g,s> ∈ Rd×n of each FC layer are used for classification
using the cross-entropy (CE) loss function

LASR = CTC(xASR, yASR) (1)

L<emotion,gender,style> = CE(< xe, xg , xs >,< ye, yg , ys >)
(2)

where yASR is the text transcription, and ye, yg , and ys are
the ground truth labels of emotion, gender, and style recogni-
tion tasks. In the conventional MTL, all the tasks are trained
simultaneously, and thus the overall objective function L of
the model is defined as:

L = (1− 3α)Lemotion + αLASR + αLgender + αLstyle (3)

where α is a weight parameter for each auxiliary task.

2.2. Adapters

Adapters have been introduced for parameter-efficient fine-
tuning of large pretrained models first in natural language pro-
cessing and then speech processing. It provides a powerful
mechanism in transfer learning and model adaptability. This

structure allow neural networks to acquire additional task-
specific information without the need for extensive finetuning
of the entire model parameters of Transformers.

In this work, after finetuning of the Transformer encoder,
adapter structures are incorporated to extract emotion and
acoustic information for other attributes. As shown in the
right part of Figure 1, to learn the shared emotional repre-
sentation, we implement low-rank adaptation (LoRA) with
rank 64 within each Transformer layer, enhancing the multi-
head attention (MHA) mechanism, and a bottleneck adapter
is incorporated after the fully-connected (FC) layer. Indi-
vidual bottleneck adapters are inserted after the Transformer
encoder for each task of emotion, gender, and style.

2.3. Proposed two-stage finetuning

Applying MTL to facilitate rich transcription from speech can
benefit SER. Nevertheless, the learning objectives and the
gradient magnitudes across different tasks pose challenges.
In the large pretrained model (which has 24 Transformer lay-
ers), the Transformer encoder tend to focus on the learning of
linguistic information, which is independent of gender and
styles. Therefore, the learning objective of ASR is appar-
ently in conflict with gender and style recognition. To address
this problem, we introduce a two-stage finetuning approach,
which conducts finetuning for different tasks step by step. As
shown in the left part of Figure 1, the pretrained model is
first finetuned with ASR and SER to embed the linguistic and
emotion information into feature extractor:

L(1) = (1− λ)Lemotion + λLASR (4)

Then in the second stage, we freeze the pretrained model, and
only the adapters are trained for emotion, gender, and style
recognition. The objective function for the second finetuning
stage is expressed as:

L(2) = (1− 2β)Lemotion + βLgender + βLstyle (5)

where β denotes a weight parameter.



Table 1. Comparasion of finetuning strategies and auxiliary tasks in single-stage finetuning.

Finetuning strategies Task SER ASR Gender Style

Adapters All parameters SER ASR Gender Style UA WA WER UA UA

✓ ✓ 68.51 67.83 - - -
✓ ✓ ✓ 71.70 71.28 23.68 - -
✓ ✓ ✓ ✓ 70.19 69.85 - 85.82 80.34

✓ ✓ 70.88 71.57 - - -
✓ ✓ ✓ 75.40 75.17 19.99 - -
✓ ✓ ✓ ✓ 71.05 70.27 - 86.37 82.16
✓ ✓ ✓ ✓ ✓ 76.19 75.49 20.14 97.52 89.29

2.4. Feature fusion and self-contrastive loss

To leverage the emotional-related acoustic information for
SER, latent features xg and xs derived from gender and style
recognition modules are fed into a shared emotion classifier.
This allows the model for using the gender and style infor-
mation for SER. Additionally, we introduce a self-contrastive
loss (SCL) that aligns the embedding space of xe, xg , and xs,
fostering the extraction of more discriminative SER features.
Given that the input features are learned from the same ut-
terance, which evidently share same emotion category. The
proposed SCL reduces intra-class feature distances. We con-
duct a comparasion of two variations of the SCL. The first
form, denoted as SCLnorm, is defined as:

SCLnorm = −||xe − xg || − ||xe − xs|| − ||xg − xs|| (6)

The second variant SCLcos, is defined as:

SCLcos = −cos(xe − xg)− cos(xe − xs)− cos(xg − xs) (7)

One of these losses is augmented to MTL of Equ (5).

3. EXPERIMENTAL SETUP

3.1. Database

In this study, we used the Interactive Emotional Dyadic Mo-
tion Capture (IEMOCAP) dataset [14] to evaluate the pro-
posed methods. This dataset contains emotional data of ap-
proximately 12 hours. Ten American English speakers were
engaged in recording five speaker-independent dyadic ses-
sions, and each session is performed by two speakers (one
male and one female) with a series of either scripted or im-
provisational scenarios (speaking style). For each speech ut-
terance, three annotators assigned the emotional categorical
labels. We adopt the common practice of merging “happy”
and “excited” into one emotion class named “happy” [15, 11],
resulting in 5,531 utterances with four emotion classes: happy
(1,636), sad (1,084), angry (1,103), and neutral (1,708).

3.2. Implementations

We implemented our proposed models with the PyTorch
framework and the Huggingface Transformers repository
[16]. In this work, we employed XLS-R (wav2vec2-xls-r-
300m) [17], a wav2vec 2.0-based pretrained model designed
for speech tasks. This model encompasses 7 Convolutional
Neural Network (CNN) layers for transmuting raw audio
data into a latent representation, coupled with 24 layers of
Transformer designed to capture contextual information. To
accommodate varying input lengths, we applied sentence
padding within each mini-batch. During training, we fine-
tuned the pretrained model for 200 epochs. The learning rate
was 10e-5, and the mini-batch size was 16. In the MTL ex-
periments, we assigned auxiliary task weight parameters (α
and β) of 0.1. In accordance with established studies [15, 18],
we conducted 5-fold speaker-independent cross-validation on
the IEMOCAP dataset.

4. RESULTS AND ANALYSIS

4.1. Comparasion of adaptation methods in single-stage
finetuning

We first compare two finetuning strategies. 1) All parameters
(of the Transformer): we finetune all parameters of XLS-R.
2) Adapters (only): we freeze the XLS-R and train adapters.

The results are presented in Table 1. With simple finetun-
ing experiments, the performance of SER exhibits a 4.52%
improvement in UA when ASR is incorporated. This observa-
tion underscores the significance of training the Transformer
encoder for ASR, facilitating the effective embedding of lin-
guistic information. On the other hand, when employing the
adapter tuning strategy, the best performance is also achieved
by simultaneously training SER and ASR, but both tasks yield
lower performance compared to finetuning the Transformers.

4.2. Results of two-stage finetuning with adapters

Within the framework of the proposed two-stage finetuning,
we systematically evaluate different training strategies. These



Table 2. Comparasion of different finetuning strategies in
two-stage finetuning (SER performance).

Setting
Finetuning strategies

UA WA
Stage 1 Stage 2

1 Adapters Adapters 71.89 71.46
2 All parameters All parameters 74.92 73.81
3 All parameters Adapters 76.54 76.07

Table 3. Results of adapter tuning in second finetuning stage.

Method
SER Gender Style

UA WA UA UA

- 77.13 76.30 98.48 91.33
Concatenation 76.89 76.06 98.77 89.29

SCL norm 77.91 77.24 98.31 90.23
SCL cos 78.49 77.85 98.64 90.57

experimental settings are defined as follows: setting 1 uses
adapter tuning in both the first and second stages, while set-
ting 2 centers around finetuning of the XLS-R model in both
stages. In setting 3, we finetune all parameters of XLS-R in
the first stage, and use adapter tuning in the second stage. In
this section, we train SER and ASR in the first stage since
these two tasks are most important in the previous section.
Then we exclusively train the model for SER in the second
stage to validate two-stage finetuning strategies.

The results are shown in Table 2. Using only adapter
tuning in setting 1 results in poor performance, since finetun-
ing Transformers are crucial for ASR. Also, setting 2 does
not gain improvement over the single-stage finetuning ap-
proach. This outcome can be attributed to the potential loss
of linguistically-rich embeddings acquired during the first
finetuning stage. In setting 3, freezing the Transformer en-
coder and finetuning the adapters bring a significant effect for
SER. Compared with single-stage finetuning, we achieved a
notable 1.04% improvement on UA.

4.3. Evaluation of the proposed feature fusion and SCL

Then we evaluate the proposed feature fusion and SCL for
SER. In this experiment, we finetune the Transformer encoder
for SER and ASR in the first stage. In the second stage, we use
adapter tuning for gender and style recognition as auxiliary
tasks of SER.1

As shown in Table 3, conducting MTL in the second stage
using adapter tuning (first line in Table 3) outperformed the
single-task model. Incorporating xe, xg , and xs for SER by
simple concatenation achieved similar performance of using

1We systematically assessed various task combinations and their orders
in two-stage fine-tuning. This configuration achieved the best performance.

Table 4. Comparsion with previous works using SSL pre-
trained models (SER performance).

Approach Year UA WA

Pepino et al. [7] 2021 67.20 -
Li et al. [18] 2022 - 63.40

Zou et al. [19] 2022 71.05 69.80
Ioannide et al. [20] 2023 - 74.32

Chen et al. [21] 2023 74.30 -
Fang et al. [22] 2023 74.03 74.95
Gao et al. [13] 2023 76.10 74.94

Proposed - 78.49 77.85

only xe. However, the incorporation of SCL can effectively
enhance the discriminative feature learning for SER. Using
SCL cos is better than SCL norm and achieved the best per-
formance among the comparative experiments.

4.4. Comparasion with state-of-the-art approaches

In this section, we benchmark the performance of the pro-
posed approach against recent studies employing SSL pre-
trained models under same experimental conditions. Table
4 provides a comparative summary. Comparing to our earlier
work involving skip-connections [13], the proposed approach,
which integrates adapters and SCL, achieves a superior per-
formance. As shown in Table 4, our approach outperforms re-
cent studies by more than 2.39% and 2.91% on UA and WA,
respectively.

5. CONCLUSION AND FUTURE WORK

We have proposed two-stage finetuning with different adap-
tation methods to effectively leverage emotional-related in-
formation for SER using a pretrained model. The experi-
mental results demonstrate that upon the finetuned model, in-
corporating adapters in the second stage for additional auxil-
iary tasks can effectively addresses the gradient conflict prob-
lem. The proposed method has achieved UA score of 78.49%.
This represents a substantial improvement, surpassing sim-
ple MTL by an absolute margin of 2.30% and the single-task
learning baseline by an absolute margin of 6.28%. Our fu-
ture research will explore the potential of adapter tuning to
enhance emotional ASR.
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