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Abstract. Speech enhancement (SE) benefits from multi-stage stack-
ing. However, this will introduce a lot of new parameters to the neural
network. In this paper, we propose a simultaneous progressive filtering-
based monaural SE model. Mapping-based and masking-based SE sys-
tems are simultaneously obtained with multi-target learning (MTL). Dif-
ferent from other MTL systems, our proposed model addresses differ-
ent enhancement needs. The mapping-based SE system aims to recover
speech signals from noisy features. While the masking-based SE sys-
tem serves as a post-filtering to further reduce the noise that still exists
after the mapping-based SE system. With the high signal-to-noise ra-
tio inputs, noise reduction of the masking-based SE system is obvious
with little speech signal loss. These two stages share one neural net-
work which controls the parameters of the entire system with little or
no increase. In addition, our approach is easy to integrate with existing
methods and improve their performance significantly and stably. The
experiments on Valentini-Botinhao data set show our proposed model
achieves 0.12 PESQ improvement compared with directly mapping-based
and masking-based SE systems both in single-target and multi-target
learning. Furthermore, by comparing spectrograms, we find that our pro-
posed models are able to recover better harmonic information.

Keywords: Speech enhancement · Multi-target learning · Simultaneous
progressive filtering · Deep learning.

1 Introduction

Speech is the main mode of communication of human beings and has a wide
range of applications. However, the unavoidable inclusion of a high level of un-
desirable noise in real scenes considerably reduces the intelligibility and qual-
ity of speech and seriously deteriorates performance in speech applications [1].
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Speech enhancement (SE) is the major front-processing method for recovering
clean speech from noisy speech and is an indispensable technique in the speech
field. Given the important role of SE, an increasing number of researchers are
exploring more effective SE systems, especially monaural SE systems [2, 3].

Deep learning-based methods are not based on any assumptions, resulting in
an enormous improvement over traditional methods [4–7], especially in unsteady-
state noisy environments [8]. Mapping and masking are two commonly used
learning targets for training a deep learning-based SE system. Mapping meth-
ods [9, 10, 8] use the nonlinear mapping ability of neural networks to recover clean
speech features from noisy features. However, limited by the capabilities of cur-
rent DNN models, mapping-enhanced features contain residual noise. Masking
methods [8, 11–13] first learn a mask, and the estimated mask is multiplied with
noisy features to reconstruct enhanced features. As a ratio mask is used to extract
a speech signal from a noisy speech signal during masking, some speech signals
may be lost [13]. Furthermore, some researchers have observed complementarity
between mapping and masking targets in SE tasks [14, 15]. Some multi-stage ap-
proaches [16, 17] outperform single-stage approaches by completing more than
one task during different stages. However, multi-stage approaches commonly re-
quire more parameters than single-stage approaches and thus, more training time
and computing resources. Besides, although multi-target learning (MTL) with
mapping and masking targets perform well with the complementarities between
mapping-based and masking-based system, it is still hard to further use these
two outputs.

In this paper, we propose a simultaneous progressive filtering-based monaural
SE approach to eliminate the shortcomings of the above mentioned approaches.
We get mapping-based and masking-based systems simultaneously with MTL.
First, we use the mapping-based SE system to enhance the original noisy fea-
tures. The mapping-based SE system keeps the speech information well but there
are still some noise residue. Then we use the masking-based SE system to do the
post-filtering. Difference from previous work, masking-based SE system recover
the output of the mapping-based SE system. Although some masking-based SE
systems lead to the loss of speech signal, the masking-based SE system with high
signal-to-noise ratio inputs has obvious noise reduction and little speech signal
loss. As mapping and masking share a common hidden layer, complementary in-
formation is available for both processes. Furthermore, the number of parameters
of our entire system are not increased at all or only by a small number.

The rest of this paper is organized as follows. Section 2 presents conventional
SE methods. Our proposed method is discussed in Section 3. Section 4 shows
detailed experiments and results. Section 5 draws conclusions.

2 Conventional SE methods

The mean squared error (MSE) is a widely used loss function in SE systems. The
MSE loss function of direct mapping (DM) method is represented as follows:

LDM =
1

TF

∑
|||X̃DM | − |X|||2F (1)
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LDM is the loss for the DM approach. |X̃DM | and |X| denote the mapping-
estimated spectrogram and the reference clean spectrogram respectively.

Signal approximation (SA) is an effective masking technique. SA trains
a ratio mask [11] to approximate the spectrogram of clean speech using the
product of the estimated mask and the noisy spectrogram, where the MSE loss
function for the SA method is represented as follows:

LSA =
1

TF

∑
||M̃ � |Y | − |X|||2F =

1

TF

∑
|||X̃SA| − |X|||2F (2)

where |Y | denotes the noisy speech spectrogram and |X̃SA| denotes the masking-
enhanced spectrogram. � denotes point-wise matrix multiplication. LSA denotes
the loss for the SA approach and M̃ denotes the estimated mask.

The principle of multi-target learning (MTL) is to learn different targets in
one model. Complementary learning targets result in enhanced performance of
all outputs. Therefore, MTL can be used to tarin mapping and masking targets.
The MTL loss function is represented as follows:

LMTL = αLDM + (1− α)LSA (3)

LMTL is the loss for the MTL method. α is the weight coefficient of the two
MSE target items. The MTL-based SE flowchart is shown in Fig. 1 (a).

3 Simultaneous progressive filtering

Simultaneous progressive filtering (SPF) contains two modules: mapping-based
pre-filtering and masking-based post-filtering modules. The mapping-based pre-
filtering module aims to recover speech signal from noisy features and obtain
the high SNR pre-enhanced spectrogram. While the masking-based post-filtering
module further reduces the noise that still exists in the pre-enhanced spectro-
gram. With the high SNR inputs, noise reduction of the masking-based post-
filtering module is obvious with little speech signal loss.

3.1 Mapping-based pre-filtering module

The pre-filtering module maps the noisy magnitude spectrogram to the pre-
enhanced spectrogram to preserve the clean speech signals and increase the SNR
of the spectrogram. We use a mapping target to train this module. The loss func-
tion of the pre-filtering module is calculated in the same way as LDM . However,
we use a different symbol, Lpre, to represent the loss function of this module,
which is given as follows:

Lpre =
1

TF

∑
|||X̃pre| − |X|||2F (4)

where Lpre is the loss of the pre-filtering module. |X̃pre| is the enhanced spec-
trogram of the pre-filtering module.

3.2 Masking-based post-filtering module

The post-filtering module reduces the residual noise of pre-filtering enhanced
spectrogram and is trained using the masking target. The use of masking targets
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Fig. 1. Multi-target learning (MTL)-based and our proposed SE flowcharts: (a) MTL-

based SE have |X̃SA| and |X̃DM | two outputs. (b) SPF-based SE simply uses MTL to
achieve simultaneous progressive filtering without introducing new parameter. (c) SPF
w/ feature refinement block-based SE adding a feature refinement block to the post-
filtering module, the input of the block contains three components in this configuration.
The green part in the flowcharts denotes masking-based module and the blue part
denotes mapping-based module.

may result in the loss of clean speech signals but greatly reduces noise. As using
the pre-filtering enhanced spectrogram as the input to the post-filtering module
considerably increases the SNR over that of the original noisy spectrogram,
the masking target that we used dose not cause serious speech distortion and
enhances performance. The loss function of this module Lpost is given as follows:

Lpost =
1

TF

∑
||M̃ � |X̃pre| − |X|||2F =

1

TF

∑
|||X̃post| − |X|||2F (5)

where M̃ is the estimated mask of the post-filtering module. |X̃post| is the output
spectrogram of the post-filtering module and the final enhanced spectrogram.

3.3 Simultaneous progressive filtering (SPF) system

The loss function of the entire SPF system LSPF is given as follows:

LSPF = βLpre + (1− β)Lpost (6)

We compress the pre-filtering and post-filtering modules in one bidirectional
long short-term memory (Bi-LSTM) neural network and utilize the complemen-
tarity features through sharing the Bi-LSTM layers to the pre-filtering and post-
filtering modules. Therefore, the Bi-LSTM output layer contains information
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common to both the pre-filtering and post-filtering modules. Thus, we simply
use MTL to run the pre-filtering module and post-filtering modules simultane-
ously and do not introduce any new parameters into the SPF system. Moreover,
our system fully utilizes the complementarity between the mapping and masking
targets and use the masking method to filter the mapping-enhanced spectrogram
again. The flowchart of SPF is shown in Fig. 1 (b).

3.4 Feature refinement Block

We design a feature refinement block to refine the shared information and sup-
plement speech information that may be lost in the pre-filtering module. The
block consists of a concatenation part and a hidden layer. The task of concate-
nation part is to concatenate the two or three inputs into one as the input of
hidden layer. The flowchart of feature refinement block is shown in Fig.2.

hiddenC hiddenC
Output of

Bi-LSTM

Feature refinement block

Fig. 2. Flowchart of feature refinement block: the 3 optional inputs of feature refine-
ment block are the noisy spectrogram |Y |, the hidden output of the shared Bi-LSTM

and the pre-filtering enhanced spectrogram |X̃pre| from top to bottom.

Based on the SPF system, we add a feature refinement block into the post-
filtering module to estimate a better mask. We explore 3 configurations of SPF
with feature refinement block. In the first configuration, the input of the hidden
layer only contains the hidden output of the shared Bi-LSTM. In the second
configuration, the input of the hidden layer is the concatenation of the hidden
ouputs of the shared Bi-LSTM and the pre-filtering enhanced spectrogram. In
the third configuration, we concatenate the hidden output of the shared Bi-
LSTM, the noisy spectrogram, and the pre-filtering enhanced spectrogram as
the input of the hidden layer. The SPF with feature refinement block system
are trained in the same way as the SPF system. But the addition of the hidden
layer in the block introduces several new parameters into the SPF with feature
refinement block system. The flowchart of SPF with feature refinement block in
the third configuration is shown in Fig. 1 (c).

4 Experiments

We conduct experiments using the Valentini-Botinhao data set [18]. Some of
the noise in the data set is obtained from the Demand database [19] and the
speech database is obtained from the Voice Banking Corpus [20]. We adopt the
validation set to control the learning rate (initialized as 0.001), which is decreased
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by 50% in the absence of improvement between two consecutive epochs. All
speech signals are sampled at 16kHz. The Hamming window is used for framing,
where the frame size is set to 512 with a 50% overlap. We use the magnitude
spectrogram as the input and output features.

We implement our model using TensorFlow. All the baseline models use Bi-
LSTM, where the Bi-LSTM model contains a 257-dimensional input layer and
two hidden layers with 1024 nodes each. A 257-dimensional output layers are
used for each of the mapping or masking targets for the single-target mapping
or masking methods. Two 257-dimensional output layers are used simultane-
ously for both the mapping and masking outputs in the multi-target learning
method. For our SPF approach, SPF has the same structure as the multi-target
learning method. For SPF with feature refinement block, we add a fully con-
nected hidden layer with 512 nodes after the Bi-LSTM layers. The input of the
feature refinement block has three components: the hidden outputs of the shared
Bi-LSTM, the noisy spectrogram, and the pre-filtering enhanced spectrogram.
We simply concatenate the three components to form the input. The parameters
of our models are randomly initialized.

We evaluate the performance of SPF and baseline methods, by using the
CSIG, CBAK and COVL [21] to measure the speech intelligibility and use the
PESQ [22] to measure the speech quality.

Table 1. Results obtained using baseline and our proposed methods. The “Input
of Post-filtering Config” part displays the configurations of the input of the masking-
based post-filtering module, all the inputs are concatenated as the input of the post-
filtering module in the feature refinement block if there are more than 1 input.

Models
Input of Post-filtering Config Metrics

output of output of noisy
CSIG CBAK COVL PESQ

Bi-LSTM pre-filtering spectrogram

Noisy - - - - 3.345 2.442 2.631 1.970

Baseline

STL-DM - - - 3.849 2.547 3.226 2.604
STL-SA - - - 3.650 2.488 3.072 2.513

MTL-DM - - - 3.820 2.538 3.205 2.594
MTL-SA - - - 3.785 2.551 3.202 2.631

Ours

SPF
√

× × 3.556 2.601 3.138 2.721
SPF w/

√
× × 3.874 2.610 3.301 2.729

Feature
√ √

× 3.860 2.603 3.288 2.717
Refinement

√ √ √
3.841 2.632 3.297 2.752

4.1 The effect of multi-target learning

The upper half part of Table 1 lists the CSIG, CBAK, COVL, and PESQ perfor-
mance obtained using different baseline systems with the test data sets. “Noisy”
denotes the performance for untreated noisy speech. “STL-DM” and “STL-SA”
denote the two single-target learning methods used for mapping and masking,
as shown in Eq.(1) and Eq.(2), respectively. “MTL-DM” and “MTL-SA” denote
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(a) Clean speech (b) Noisy speech

(c) Enhanced by STL-DM (d) Enhanced by STL-SA

(e) Enhanced by SPF (f) Enhanced by SPF w/ feature refinement

Fig. 3. Magnitude spectrograms obtained from different types of speech (a) Clean
speech; (b) Noisy speech; (c) Speech enhanced by STL-DM; (d) Speech enhanced by
STL-SA; (e) Speech enhanced by SPF; (f) Speech enhanced by SPF w/ feature refine-
ment when the input of post-filtering module consists of the hidden output of Bi-LSTM,
the output of pre-filtering module and the noisy spectrogram.

the two outputs of the MTL method, as shown in Eq.(3). The hyperparameter
α is set to 0.5 for the MTL. Using MTL improves the SE performance, e.g.,
The PESQ of “MTL-SA” is 0.118 higher than that of “STL-SA”. However, us-
ing MTL causes a slight drop in the performance for some systems, e.g., the
performance of “MTL-DM” was slightly lower than that of “STL-DM”.

4.2 The performance of proposed methods

The bottom half part of Table 1 shows the results obtained using our SPF meth-
ods. “SPF” is described in section 3.3, and the corresponding β was set to 0.2.
The 3 configurations of “SPF with feature refinement block” are described in
section 3.4, and the corresponding β values were set to 0.9, 0.8 and 0.3, re-
spectively. All of proposed methods considerably outperformed the conventional
SE methods. Even without the feature refinement block, the PESQ of “SPF”
was 0.09 higher than the best performance obtained using the baseline methods.
These results shows that our simultaneous progressive filtering approach can be
used to produce an enhancement system with superior performance and without
introducing any new parameters. The main reason for the enhanced performance
is that designing our mask for the mapping-enhanced spectrogram instead of the
original spectrogram fully utilizes the complementarity of the two targets.

The β of “SPF” was set to 0.2. Thus, the masking-based pre-filtering mod-
ule is more important than the mapping-based post-filtering module in “SPF”.
Unlike “STL-SA” and “MTL-SA”, masking is used to recover a high-SNR spec-
trogram instead of a noisy spectrogram using “SPF”. Thus, the masking method
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lowers the information loss for high-SNR spectrograms. However, for “SPF with
feature refinement block”, the focus of the network gradually shifts from the
pre-filtering module to the post-filtering module as more information is added
to the hidden layer. Compared with the baseline methods, “SPF with feature re-
finement block” not only exhibited a PESQ improvement of more than 0.12 but
also showed improved performance in the other three indicators. These results
provide strong evidence that our proposed method can recover speech signals
and remove residual noise more effectively than existing methods.

4.3 The effect on the spectrogram

Fig. 3 shows the magnitude spectrograms of clean, noisy and speech enhanced
using the 4 systems. We observed clear differences among the spectrograms.
Noise severely negatively impacts the speech signal for the noisy spectrogram.
The STL-DM enhanced spectrogram still contains a considerable level of noise,
and the details of many speech signals are not clear. The details of the STL-
SA enhanced spectrogram are also not clear, and some speech signals are lost.
Compared with the two STL enhanced spectrograms, some details of the SPF
spectrogram are clearer, but some residual noise remains. The enhanced spec-
trogram by SPF with feature refinement block has the highest level of detail of
the enhanced spectrograms, but there is a slight loss of some speech signals. We
will address this speech distortion problem in a future study.

5 Conclusions and future work

In this paper, we proposed a simultaneous progressive filtering-based monaural
speech enhancement approach. Two filtering modules were used: a mapping-
based pre-filtering module and a masking-based post-filtering module. The pre-
filtering module obtained a mapping-enhanced spectrogram from a noisy spectro-
gram to preserve clean speech signals and obtain a high-SNR spectrogram. The
post-filtering module reduced the residual noise of the enhanced spectrogram
obtained using the pre-filtering module. Our proposed simultaneous progres-
sive filtering method exhibited a high SE performance; e.g., “SPF with feature
refinement block” had a PESQ improvement of more than 0.12. As the post-
filtering module filters the high-SNR spectrogram instead of the original noisy
spectrogram, masking reduced the information loss and enhanced performance.
As a multi-target learning strategy was used to develop these two modules, the
number of the parameters of our proposed system was not increased or only by
a small number. In addition, our SPF strategy can be easily integrated with
many existing methods. In the future, we will apply this system to other speech
processing tasks such as ASR.
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