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Abstract

Many state-of-the-art speech enhancement (SE) systems have
recently used convolutional neural networks (CNNs) to extract
multi-scale feature maps. However, CNN relies more on local
texture than global shape, which is more susceptible to degraded
spectrogram and may fail to capture the detailed structure of
speech. Although some two-stage systems feed the first-stage
enhanced and original noisy spectrograms to the second stage
simultaneously, this does not guarantee sufficient guidance for
the second stage since the first-stage spectrogram can not pro-
vide precise spectral details. In order to allow CNNs to per-
ceive clear speech component boundary information, we com-
pose feature maps with spectrograms containing evident speech
components according to the mask value from the first stage.
The positions corresponding to the mask greater than certain
thresholds are extracted as feature maps. These feature maps
make the boundary information of speech components obvious
by ignoring others, thus making CNNs sensitive to input fea-
tures. Experiments on the VB dataset show that with a proper
decomposition numbers, the proposed method can enhance SE
performance, which can provide 0.15 PESQ improvement. Be-
sides, the proposed method is more effective for spectral detail
recovery.
Index Terms: Spectrogram decomposition, speech component
awareness, speech enhancement, deep learning

1. Introduction
In recent years, speech applications have become increasingly
popular with their convenience. Application scenarios have
subsequently become more complex, which further requires im-
proved performance of speech front-end processing [1, 2]. The
noise in the real scenarios will have a great negative impact on
speech signal processing [3, 4], which makes speech noise re-
duction receive more and more attention. Therefore, it is impor-
tant to develop a front-end processing to recover clean speech
components from noisy speech signals.

Recently, deep learning-based speech enhancement (SE)
systems [5, 6, 7] show better performance than the traditional
signal processing methods [5, 8, 9]. Common networks are
fully connected neural networks, recurrent neural networks
(RNNs) [10, 11, 12] and convolutional neural networks (CNNs)
[13, 14]. Different network structures have different character-
istics: RNNs can capture the long-term contextual information

*: Corresponding author

to consider long-term acoustic information [10]; CNNs intro-
duce convolution kernels to obtain multi-scale feature maps of
input features [15, 16]. Local connections and weight sharing
greatly reduce model parameters.

Many recent works achieve state-of-the-art performance
with CNNs [17, 18, 19, 20]. It is generally believed that hu-
mans identify objects primarily by their shape. But CNNs tend
to use color and texture to make predictions rather than shape
[21]. For noisy speech, the noise will destroy the speech spec-
trogram structure [22], especially the texture information. In
addition, due to the influence of noise, it is difficult to see the
shape of many important structures such as formants in noisy
spectrograms. This brings difficulties to SE with CNNs. Some
two-stage systems utilize the first stage to obtain enhanced spec-
trogram, which are then fed into the second stage as input fea-
tures. Although this is helpful for network learning, the en-
hanced spectrogram obtained in the first stage often has great
defects in details and information retention, which makes it dif-
ficult to obtain a greater improvement through the second stage.

In this paper, we address the above problem by highlight-
ing speech components. We extract the strong speech part and
ignore others, so as to make the boundary of the speech com-
ponent obvious. Strong speech part is determined based on the
output mask by a trained masking-based SE system. The mask
value shows the proportion of speech components present. We
extract the spectral information corresponding to the position
where the mask is larger than a certain threshold to form a fea-
ture map. The stacking of feature maps of strong speech com-
ponents enables the input features to provide sufficient speech
boundary information, making the CNNs more sensitive to the
input features.

The rest of this paper is organized as follows. Section 2 de-
scribes the masking-based SE. Section 3 describes our proposed
method. Section 4 gives the experimental settings and results.
Section 5 gives the conclusion and future work.

2. Related Works
Speech enhancement (SE) aims to recover clean speech from
noisy speech signals. Masking-based SE systems have received
more and more attention in recent years. They can be formu-
lated as follows:

|M̂| = N (|Y|), (1)

where N , |Y|, |M̂| are neural network, noisy spectrogram and
estimated mask respectively. The estimated mask shows how
much speech components exist in each time–frequency (T–F)
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Figure 1: (a) Flowchart of proposed spectrogram decomposition method. (b) one example of spectrogram decomposition.

bin. The masking-based SE uses the mask to extract the speech
components in T–F bins. The enhanced spectrogram is obtained
by multiplying the noisy spectrogram with the estimated mask:

|X̂| = |M̂| ⊙ |Y|, (2)
where the |X̂| is the enhanced spectrogram. Signal approxi-
mation (SA) [23] is a masking method approximated with the
speech signal. It does not directly calculate the loss between
the estimated and ideal masks, but uses the loss between the
estimated and clean spectrogram:

LSA =
1

TF

∑
T,F

(
|X̂| − |X|

)2

(3)

where T , F denote the time and frequency, respectively. And
|X| denotes the clean spectrogram. The phase from the noisy
speech signal will be used to reconstruct the ehanced waveform.

The two stage model contains two SE modules. Enhanced
spectrogram |X̂| can be obtained from the first stage. Then, an-
other SE module is employed to get the final enhanced feature:

|M̂| = N (|X̂|), (4)
|M̂| = N (|Y|, |X̂|), (5)

where |Y| is the noisy spectrogram. The enhanced spectrogram
|X̂| can be directly input to the second stage with Eq.( 4). An-
other way is to input the enhanced and noisy spectrograms to
the neural network simultaneously with Eq. (5), which will en-
sure that the noise spectrogram compensates for the information
lost in the enhanced spectrogram. Both of them get the final en-
hanced spectrogram by Eq. (2).

3. Proposed Method
Spectrogram is a widely used feature to SE. However, the noise
greatly deteriorates the structure of speech components in the
spectrogram, especially when the signal-noise ratio is small.
This will greatly affect the CNNs extraction of multi-scale fea-
tures with noisy spectrograms. We design spectrogram decom-
position to extract input features that are beneficial to CNNs,
which solve the problem that CNNs is insensitive to shape.

3.1. System Description

Fig. 1–(a) shows the flowchart of our proposed method. The
proposed method has two stages. Masking-based SE is chosen

Algorithm 1: Pseudo-code of the spectrogram de-
composition

Input: number of intervals n, mask m, noisy
spectrogram specn

Output: decomposed spectrogram specd
1 slices = n;
2 step = 1/slices;
3 specd = specn;
4 for i in range (1, slices) do
5 x slice = float(bool(m > step ∗ i));
6 specd = concatenate(specd, x slice ∗ specn);
7 end

to estimate a mask for the first stage. Then the mask is used to
decompose noisy spectrogram. The decomposed feature |D| is
as input feature to the second stage:

|M̂| = N (|D|), (6)
It should be emphasized that the enhanced spectrogram is not
included as input feature in the second stage. Both two stages
adopt the structure of convolutional recurrent neural network
(CRN) [18]. It is a U-Net-based network. It contains a encoder,
LSTM layers and a decoder. The encoder has some convolu-
tional block to extract multi-scale feature maps. The LSTM
layers are used to get better deep embedding than the output of
encoder. The decoder has some deconvolutional block to restore
features.

3.2. Spectrogram Decomposition-based Feature Extraction
for CNN

We decompose the spectrogram according to the value of |M̂|.
A mask value shows the proportion of speech components in
noisy speech. Since most of the values of mask are in (0, 1),
we divide (0, 1) into n equidistant intervals. The mask value
greater than the lower bound of the interval is used to form a
new feature map. The speech components with larger mask
values have a high probability of being prominent. Our pur-
pose is to only retain strong speech components in the decom-
posed spectrograms, ignoring other information. Thus, clear
edge connection can be formed, so as to highlight the shape of
the speech components, which can assist CNNs in extracting



multi-scale feature maps.
This decomposition process can be divided into two steps:

mask estimation and spectrogram decomposition. The i–th de-
composed mask is:

mt,f
i =

{
0, |M̂|t,fi < bt,f

i ,

1, |M̂|t,fi > bt,f
i ,

(7)

where bi denotes the lower bound of the i–th interval and mi

denotes the decomposed mask. Thus, we can obtain n decom-
posed masks.

We use the decomposed masks to extract the information of
the corresponding position in the noisy spectrogram:

di = mi ⊙ |Y|, (8)
where di denotes the i–th decomposed spectrogram. For a fea-
ture map with a large lower bound of the mask interval, the
speech information is more obvious. Finally, we concatenate
the obtained feature maps to get a multiple-channel feature:

|D| = concat(di), i ∈ [1, n], (9)
We use the decomposed spectrograms as the input of the second
stage network. It should be noted that we only use mask decom-
position to obtain binary matrices instead of using the mask to
enhance the spectrogram. Algorithm 7 shows the pseudo-code
of the spectrogram decomposition.

4. Experiments
4.1. Experimental Settings

We used a public VB dataset for experiments1, which is syn-
thezied from Voice Bank dataset and the Demand dataset. It
contains training and testing sets. We selected all the data of
two speakers (one male and one female) as the validation set.
This will ensure that the speakers were unseen. Finally, our
training set contained 10,705 utterances, and the validation set
contained 867 utterances. We used the best-performing model
under the validation set for evaluation. The test set contained
824 utterances in total. The sampling rate of the original dataset
is 48k Hz, and we downsampled the audio to 16k Hz in our ex-
periments. For feature extraction, we used the following param-
eters: window length was 512; hop length was 256; short-time
fourier transform points was 512. We used the magnitude of the
spectrogram as both input and output of this experiment.

We used the convolutional recurrent neural network (CRN)
[18] in these experiments. In all experiments, except for the
input dimensions, the network structures were the same. They
have 5 encoder layers and 5 decoder layers. The LSTM had
two layers, each layer had 1,792 nodes. We used n to represent
the input feature dimensions. When training the network, we
used the mean squared error as the loss function; the batch size
was 18; the initial learning rate was 0.0006; the optimizer was
Adam; the epoch was 50. We tested three baseline methods:
* CRN: the network was trained with Eq. (3); the input feature
is noisy spectrogram; the input size was 1× 257× F .
* CRN-stack: a two-stage method; it contains two CRNs, the
input of the first CRN is noisy spectrogram, the input of the
second CRN is the enhanced output from the first CRN.
* CRN-stack-w-noisy: the input of the second CRN is the
concatenation of noisy and enhanced spectrogram; the other
structures are same with “CRN-stack”.

We used the perceptual evaluation of speech quality (PESQ)
[24], CSIG (higher value indicates clearer and more natural
speech)[24], CBAK (higher value indicates the less intrusive

1https://datashare.ed.ac.uk/handle/10283/2791

Table 1: Results of different enhancement systems.

System CSIG CBAK COVL PESQ

noisy (input) 3.35 2.44 2.63 1.97
CRN 3.505 2.978 3.020 2.563

CRN-stack 3.596 3.036 3.095 2.617
CRN-stack-w-noisy 3.829 3.065 3.233 2.635

decomposition 4.015 3.099 3.368 2.722

Figure 2: Samples of decomposed spectrograms.

of background noise)[24], COVL (Overall speech quality, the
higher the better)[24] as evaluation metrics.

4.2. Performance of Different SE Systems

Table 1 shows the results of different enhancement systems. It is
difficult to get the improved results simply by stacking the net-
work. Although the “CRN-stack” had double number of param-
eters, the improvement of performance was small. Even when
the noisy spectrogram was added back in the second stage, the
gains were still small.

In Table 1, “decomposition” denotes the proposed spectro-
gram decomposition-based system. The number of parameters
of “decomposition” is almost the same as “CRN-stack”. Com-
pared to simple stacking, spectrogram decomposition can pro-
vide more than 0.1 PESQ improvement. Because the decom-
posed spectrogram is still noisy, PESQ had an 0.15 improve-
ment from the baseline “CRN” that only takes the noisy spectro-
gram as input. This indicates that the speech component aware-
ness is helpful for enhancement tasks. Moreover, “decomposi-
tion” was more effective than other methods in maintaining the
speech signal, e.g., it had about 0.42 CSIG improvement from
the “CRN-stack”.

4.3. The Effect of Decomposed Spectrograms

Figure. 2 shows a sample of the decomposed spectrograms. We
randomly selected some high value boundaries. It can be clearly
seen that some speech components are highlighted. It shows
that spectrogram decomposition can make the CNNs more sen-
sitive.

4.4. Effect of Different Decomposition Numbers

Figure. 3 shows the evaluation metrics for different decompo-
sition numbers. The decomposition number of 30 is shown
in Table. 1. All decomposition methods had improved per-



Figure 3: Measures on different decomposition numbers: Red line represents the “decomposition”; Blue line represents the “CRN-
stack”; Black line represents the “CRN”.
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Figure 4: Spectrograms of different enhancement systems: (a)
clean speech; (b) CRN enhanced speech; (c) CRN-stack en-
hanced speech; (4) Decomposition enhanced speech.

formance over baselines, especially when the decomposition
numbers were 30 and 70. This trend was obvious for PESQ,
CSIG, and COVL. It was not the case that finer spectrogram
decomposition could lead to better enhancement performance.
This implies that the appropriate decomposition number needs
to be found when decomposing the spectrogram. Moreover, the
CBAK was not much changed. The decompositions number
was more likely to affect the recovery of speech components
and the overall signal.

4.5. Effect of Spectrogram Decomposition on Spectrogram

Figure. 4 shows the spectrograms of different enhancement sys-
tems. “CRN” had serious information loss in the silent regions.
Although “CRN-stack” had alleviated this problem, there was
residual noise. Moreover, the energy of “CRN-stack” was
greater in the speech regions, and some detailed information
was lost. Compared with the other two methods, the proposed
“decomposition” had better spectrogram recovery.

4.6. Effect of Spectrogram Decomposition on Feature Maps

We selected some feature maps from output of conv2d 1, which
are shown in Figure. 5. The noise in the feature maps extracted
by “decomposition” was greatly suppressed. In addition, the
speech signal part of the feature map was also better preserved,
especially the middle and high frequency parts. This shows
that the proposed spectrogram decomposition can help to al-
leviate the robustness problem caused by texture bias in CNN.

Figure 5: Selected feature maps of baseline (CRN) and pro-
posed decomposition method.

For more details, please visit the URL2.

5. Conlusion and Future Work
In this paper, we have proposed spectrogram decomposition to
extract CNNs-sensetive input features for SE. We decomposed
the spectrogram using the mask from a trained masking-based
SE system. First, we divided the mask into equal intervals ac-
cording to the value of the mask. Then the regions larger than
each interval constitute a new decomposition feature map. Fi-
nally, we concatenated multiple decomposed features and input
them into the network as input features. We showed that the pro-
posed method had better speech component and overall signal
recovery. Besides, a proper decomposition number can bring
better enhancement performance. Moreover, the proposed spec-
trogram decomposition helps CNNs by extracting feature maps
with less noise and prominent speech components. In the fu-
ture, we will try more ways to decompose the spectrogram and
combine autoML to select the decomposition number automat-
ically.
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