
Self-Distillation Based on High-level Information Supervision
for Compressing End-to-End ASR Model

Qiang Xu1, Tongtong Song1, Longbiao Wang1∗, Hao Shi2∗, Yuqin Lin1,
Yongjie Lv1, Meng Ge1, Qiang Yu1, Jianwu Dang1,3

1Tianjin Key Laboratory of Cognitive Computing and Application,
College of Intelligence and Computing, Tianjin University, Tianjin, China

2Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto, Japan
3Japan Advanced Institute of Science and Technology, Ishikawa, Japan
{xu qiang,longbiao wang}@tju.edu.cn,shi@sap.ist.i.kyoto-u.ac.jp

Abstract
Model compression of ASR aims to reduce the model pa-
rameters while bringing as little performance degradation as
possible. Knowledge Distillation (KD) is an efficient model
compression method that transfers the knowledge from a large
teacher model to a smaller student model. However, most of
the existing KD methods study how to fully utilize the teacher’s
knowledge without paying attention to the student’s own knowl-
edge. In this paper, we explore whether the high-level informa-
tion of the model itself is helpful for low-level information. We
first propose neighboring feature self-distillation (NFSD) ap-
proach to distill the knowledge from the adjacent deeper layer to
the shallow one, which shows significant performance improve-
ment. Therefore, we further propose attention-based feature
self-distillation (AFSD) approach to exploit more high-level in-
formation. Specifically, AFSD fuses the knowledge from mul-
tiple deep layers with an attention mechanism and distills it to
a shallow one. The experimental results on AISHELL-1 dataset
show that 7.3% and 8.3% relative character error rate (CER) re-
duction can be achieved from NFSD and AFSD, respectively. In
addition, our proposed two approaches can be easily combined
with the general teacher-student knowledge distillation method
to achieve 12.4% and 13.4% relative CER reduction compared
with the baseline student model, respectively.
Index Terms: automatic speech recognition, self-distillation,
teacher-student model, model compression

1. Introduction
End-to-end (E2E) automatic speech recognition (ASR) [1, 2, 3,
4, 5, 6] has gained more and more attention due to its conve-
nience in human-computer interaction. The mainstream models
mainly include connectionist temporal classification (CTC) [2,
7, 8], recurrent neural network-transducer (RNN-T) [3, 9, 10],
and attention based encoder-decoder (AED) [11, 12, 13]. How-
ever, E2E ASR model often contains a large number of parame-
ters, which requires large storage and computing capacities. So,
it is often difficult to be deployed on embedded devices and on-
device applications. Although reducing parameter numbers can
alleviate these problems, this often leads to a sharp drop in per-
formance. Therefore, it is important to compress the parameters
of a large model while minimizing performance degradation.

Knowledge Distillation (KD) [14, 15, 16, 17] is one of the
most common model compression methods. KD can be gener-
ally divided into three types: offline distillation [14, 18, 19, 20],

*Corresponding author

online distillation [21, 22, 23] and self-distillation [24]. Offline
distillation guides the training of a small-parameter model (stu-
dent model) with a pre-trained large-parameter model (teacher
model). Online distillation trains the teacher model and the stu-
dent model simultaneously, and information from the teacher
model is introduced into the student model during training. For
self-distillation, the student model becomes its own teacher.
Pseudo-targets are introduced into the training process to im-
prove the performance of the model [24]. Compared with of-
fline distillation and online distillation, self-distillation does not
require extra teacher models. Self-distillation focuses on how
to make better use of its own information rather than extract in-
formation from other large models. However, the current self-
distillation method [24] does not entirely use the student’s own
knowledge to guide its training, but creates pseudo-targets to
assist the training of the student model.

In this paper, we propose two novel self-distillation meth-
ods to utilize high-level information from the model itself
without creating pseudo-targets. Our proposed self-distillation
methods aim to supervise itself with high-level information.
More specifically, we self-distill knowledge from deep encoder
(decoder) layers to shallow layers. This is because deep layers
can extract features with stronger representational capabilities
than shallow layers[14, 22]. The proposed two self-distillation
methods are called neighboring feature self-distillation (NFSD)
and attention-based feature self-distillation (AFSD).

(1) In NFSD, every two adjacent layers are viewed as one
group, and the adjacent groups do not contain the same lay-
ers. The features of the deeper layer are distilled to the shallow
one in each group. The NFSD method is our initial attempt to
use high-level information for self-distillation, proving the ef-
fectiveness of high-level information.

(2) We further propose the AFSD method to utilize more
high-level information for self-distillation. In AFSD, for each
layer, we first use an attention mechanism to calculate the simi-
larity between it and all layers after it; then, we use the obtained
similarity weights to fuse all deep features; finally, we distill the
fused feature to it.

Furthermore, our methods can be easily integrated with ex-
isting teacher-student distillation methods, called NFSD-offline
and AFSD-offline. The two ways first use the offline distillation
method to obtain the student model, and then the NFSD and
AFSD methods are applied to the student model, respectively.

This paper is organized as follows. Section 2 describes the
related works. Section 3 describes our proposed methods. Sec-
tion 4 describes the experimental setting and evaluations. The
conclusions and the future works are given in Section 5.



2. Related work
The proposed methods are used on both the encoder and de-
coder sides, and we use U2 [12] for experiments. U2 is a pop-
ular hybrid CTC/attention network that supports streaming au-
toregressive and non-autoregressive decoding. In addition, to
compare the performance with offline distillation and further
combine our methods with it, we choose the commonly used
teacher-student knowledge distillation method: patient knowl-
edge distillation (PKD) [14]. In this section, we briefly review
U2 and PKD.

2.1. U2

U2 [12] is a two-pass architecture that contains a Shared En-
coder, a CTC Decoder, and an Attention Decoder. The Shared
Encoder contains multiple Transformer [25] or Conformer [26]
encoder layers, acting as an acoustic feature extractor. The CTC
Decoder consists of a projection layer and a log softmax layer,
supporting streaming decoding in the first pass. The Attention
Decoder contains multiple transformer decoder layers, support-
ing autoregressive decoding and non-autoregressive rescoring
in the second pass.

During training, U2 adopts the training method of joint
CTC-Attention [27]. The training loss is combined with CTC
loss and AED loss as follows:

LU2(x,y) = λLCTC(x,y) + (1− λ)LAED(x,y) (1)
where x stands for the acoustic features and y is the correspond-
ing annotation. LCTC(x,y) and LAED(x,y) are the CTC and
AED losses, respectively. λ is a hyperparameter that balances
the importance of CTC and AED loss.

During decoding, U2 provides autoregressive and non-
autoregressive decoding modes. In autoregressive decoding
mode, the outputs of the CTC Decoder are ignored, the Atten-
tion Decoder combines the output of the Shared Encoder to gen-
erate outputs in an auto-regressive way. We call this decoding
mode as attention. In non-autoregressive decoding mode, the
CTC Decoder generates n-best hypotheses with the output of
the Shared Encoder firstly, then n-best hypotheses are scored by
the Attention Decoder with the output of the Shared Encoder to
get the best hypothesis as the final decoding result. This decod-
ing mode avoids the auto-regressive process and achieves better
real-time factor(RTF). This decoding mode is called rescoring.

2.2. Patient knowledge distillation (PKD)

Patient knowledge distillation (PKD) is a common method for
the typical teacher-student offline distillation, which distills the
teacher’s knowledge to the student. PKD has two methods
called PKD-Skip and PKD-Last. In PKD-Skip, the student
learns from every k layers of the teacher. In PKD-Last, the
student learns from the last k layers of the teacher. For exam-
ple, the teacher has 12 layers and the student has 4 layers, then
Ipkd = {3, 6, 9, 12} for PKD-Skip or Ipkd = {9, 10, 11, 12}
for PKD-Last. Ipkd refers to the teacher’s knowledge that the
student needs to learn. PKD-Skip performs slightly better than
PKD-Last. The training loss introduced by the PKD is defined
as the mean-square loss between the normalized hidden states:

LPKD =

M∑
i=1

j=I(i)

∣∣∣∣∣
∣∣∣∣∣ Hs

i

∥ Hs
i ∥2

−
Ht

j

∥ Ht
j ∥

2

∣∣∣∣∣
∣∣∣∣∣
2

2

(2)

where Hs
i and Ht

j denote the outputs of the student’s i-th layer
and the teacher’s j-th layer. M denotes the number of layers in
the student network, the function I(·) refers to the set Ipkd.

Block m

Block m+1

…
(a) NFSD

Block m

…

Block m+1

…

Block M

D
ee

p
 B

lo
ck

s

(b) AFSD

Attention-based feature fusion

Distillation Deep feature

Block m+2

Block m+3

…

Block m+2

Block m+3

…

Figure 1: Schematic diagram of the methods NFSD (a) and
AFSD (b). The Block module represents the encoder or decoder
layer. For NFSD, we tie every two blocks as a group and distill
the feature from the higher block to another one in each group;
For AFSD, We use Attention-based feature fusion module to fuse
features from all higher blocks (Deep Blocks) after the current
block and then distill the fused feature to the current block.

3. Proposed methods
We propose two feature self-distillation methods (NFSD and
AFSD) to improve the performance of the ASR model. NFSD
distills adjacent deeper feature to the shallow feature; AFSD
adopts dot attention to fuse multiple deeper features and dis-
tills the fused feature to the shallow feature. Figure 1 depicts
a simple schematic of the specific distillation process of the
NFSD and AFSD. Furthermore, we combine the proposed self-
distillation methods with the offline distillation method to fur-
ther improve the performance of the student model. In this sec-
tion, we introduce the proposed methods in detail.

3.1. Neighboring Feature Self-Distillation (NFSD)

Our neighboring feature self-distillation (NFSD) method can be
applied on both the encoder and decoder sides. For encoder and
decoder, the principle of our self-distillation method is the same,
so we only choose the encoder to describe our method. For ease
of description, we denote the hidden output of each encoder
layer as {HE

1 , . . . ,H
E
Le

}, where Le represents the number of
the encoder layers. We tie every two layers of the Le layers into
Le
2

groups and calculate the similarity of the two layers in each
group. In each group, the shallow layer learns the feature rep-
resentations from the adjacent deeper layer, this is because the
feature representations of adjacent layers are the most similar.
We use mean square error (MSE) to measure the similarity be-
tween the two layers in each group, as shown in Equation (3),
where HE

2i−1 and HE
2i refer to the outputs of two layers in the

i-th group.

Lnfsd e =

Le
2∑

i=1

MSE(HE
2i−1,H

E
2i) (3)

Since the decoder is the same as the encoder, the total self-
distillation loss function of the NFSD is as follows:

LNFSD = αLnfsd e + βLnfsd d (4)



where Lnfsd e and Lnfsd d are the self-distillation loss func-
tions of the encoder and decoder sides. α and β are hyperpa-
rameters used to balance the importance of the two losses.

With NFSD, the training loss function of our entire model
becomes:

L = LU2 + LNFSD (5)

where LU2 represents the original loss function of U2, LNFSD

is designed by ourselves. In LNFSD, if α is equal to zero, we
only distill the decoder side of the model. β is equal to zero
means that only the encoder side is distilled.

3.2. Attention-based Feature Self-Distillation (AFSD)

NFSD does not fully utilize all high-level information. We fur-
ther propose the AFSD method to solve this problem. AFSD
fuses multiple deep features by dot-attention, then distills the
fused feature to the shallow feature. Similarly, we still only de-
scribe the method details on the encoder side. Differently, in
AFSD, the teacher of each layer is not its next layer but the
fusion of all layers’ features after it, as follows:

KT
i =

Le∑
j=i+1

αi,j ⊙HE
j (i = 1, . . . , Le − 1) (6)

αi,j =
exp(DotAttention(HE

i ,H
E
j ))∑Le

j′=i+1 exp(DotAttention(HE
i ,H

E
j′))

(7)

where ⊙ indicates the Hadamard product, KT
i is the knowledge

that the i-th layer needs to learn. Then we sum all layers except
the last layer (without distilled) to get the distillation loss func-
tion Lafsd e of the encoder side as Equation (8). Equation (9)
is the total self-distillation loss function of AFSD.

Lafsd e =

Le−1∑
i=1

MSE(HE
i ,K

T
i ) (8)

LAFSD = αLafsd e + βLafsd d (9)

where the meanings of α and β are the same as those in Equa-
tion (4). With AFSD, the training loss function of the entire
model is as follows:

L = LU2 + LAFSD (10)

3.3. NFSD-offline and AFSD-offline

Since NFSD and AFSD only use the knowledge of the student
model itself without the knowledge of the teacher, we further
combine self-distillation with offline distillation, called NFSD-
offline and AFSD-offline. We choose the most commonly used
PKD [14] method as the offline distillation method, and self-
distillation is our proposed NFSD and AFSD methods. The
NFSD-offline and AFSD-offline methods are divided into two
stages. The first stage is distilling a large teacher model to a
smaller student model with the PKD method, as follows:

L = LU2 + γLPKD (11)
where γ is a hyperparameter that balances the importance of the
PKD loss. LPKD is Equation (2), which refers to the training
loss function of the PKD method. The second stage is to further
apply the NFSD and AFSD methods to the student model ob-
tained after offline distillation for self-distillation, the training
loss function is the same as Equation (5) and Equation (10).

4. Experiments
All our experiments are conducted on a public Mandarin speech
corpus AISHELL-1 [28], which contains 150 hours training set,

Table 1: Results of applying two different training strate-
gies on NFSD. One is one-stage training strategy (E1-E2), an-
other is two-stage training strategy (E3-E4). LNFSD refers to
αLnfsd e + βLnfsd d. α/β means α equals to β.

Exp.ID α/β
Loss (L) CER

first-stage second-stage attention rescoring

E1 0.1 LU2 + LNFSD - 6.92 7.00
E2 0.2 LU2 + LNFSD - 6.82 6.97

E3 0.1 LU2 LU2 + LNFSD 6.75 6.74
E4 0.2 LU2 LU2 + LNFSD 6.73 6.66

20 hours development set and 10 hours test set, the test set con-
tains 7,176 utterances recorded by 20 speakers.

4.1. Baseline models

(1) Teacher: The teacher model contained 47M parame-
ters. It used two convolution sub-sampling layers with kernel
size 3*3 and stride 2 as subsampling module in the front of
the shared encoder. In addition, the teacher contained 12 con-
former encoder layers and 6 transformer decoder layers with 4
multi head attention for Shared Encoder and Attention Decoder.
All conformer and transformer layers used 256 attention dimen-
sions and 2048 feed forward dimensions.

(2) Student: The student model contained 13.9M parame-
ters. The subsampling module of the student was the same with
the teacher. Differently, the student contained 4 conformer en-
coder layers and 2 transformer decoder layers with 4 multi head
attention for Shared Encoder and Attention Decoder. All con-
former and transformer layers used 256 attention dimensions
and 1024 feed forward dimensions.

(3) PKD: The PKD model was the student model obtained
by distilling the teacher model. Its model structure was the same
with Student. The teacher-student offline distillation method
PKD [14] was used in the training process.

4.2. Experimental setup

We used 80 dimensional log-mel filter bank (Fbank) computed
on 25 ms window with 10 ms shift as feature. We also used
SpecAugment [29]. Our modeling units included 4233 char-
acters (including a padding symbol <pad>, an unknown sym-
bol <unk>, and a start-or-end-of-sentence symbol <sos/eos>).
We set γ in Equation (11) to be 0.2. In the training stage, we
used Adam optimizer [30] and a varying warmup learning rate
[25] with warmup steps set to 25000. In the inference stage,
we used two streaming decoding algorithms to measure the per-
formance of the model, attention for autoregressive decoding
and rescoring for non-autoregressive decoding. The decoding
chunk size was 16, and the latency was about 640 ms. More-
over, we averaged the top 20 best models, which had a lower
loss on the dev set at the training stage as the final test model.
For the U2 teacher model and student model, we used wenet
[31] end-to-end speech recognition toolkit for all experiments.

4.3. Comparison of different training strategies on NFSD

We tried two different training strategies on the NFSD method
in Table 1: one was a one-stage strategy (E1-E2) to directly
train the student model from scratch with Equation (5) until
fully converged; another was a two-stage training (E3-E4), pre-
training the student model with Equation (1) until fully con-
verged firstly, and then training the student model with Equation
(5) until fully converged. For α and β in Equation (4), we set



Table 2: CERs of different knowledge distillation methods on three baseline models. where LNFSD (0.2Lnfsd e + 0.2Lnfsd d) and
LAFSD (0.2Lafsd e + 0.2Lafsd d) are from Equation (4) and Equation (9). LU2 and LPKD are Equation (1) and Equation (2).

Exp. ID System Params (M) Loss (L) CER

first-stage second-stage attention rescoring
T0 Teacher (baseline) 47 LU2 - 5.95 6.01
T1 + NFSD 47 LU2 LU2 + LNFSD 5.76 5.62
T2 + AFSD 47 LU2 LU2 + LAFSD 5.67 5.56
T3 Student (baseline) 13.9 LU2 - 7.11 7.23
T4 + NFSD 13.9 LU2 LU2 + LNFSD 6.73 6.66
T5 + AFSD 13.9 LU2 LU2 + LAFSD 6.68 6.63
T6 PKD (baseline) 13.9 LU2 + 0.2LPKD - 6.85 6.76
T7 + NFSD (NFSD-offline) 13.9 LU2 + 0.2LPKD LU2 + LNFSD 6.55 6.33
T8 + AFSD (AFSD-offline) 13.9 LU2 + 0.2LPKD LU2 + LAFSD 6.53 6.26

α equal to β. From the results shown in Table 1, the two-stage
training strategy performed better than one-stage and it could
obtain the best results when the weights of α and β were set
to 0.2, so all our next experiments used the two-stage training
strategy, and α and β were both fixed to 0.2.

4.4. Effects of directly decreasing parameters

In Table 2, T0 and T3 were our pre-trained baseline teacher and
student models, trained with Equation (1). We compressed the
teacher’s encoder to 4 layers and decoder to 2 layers, the com-
pression ratio was about 3.37 times. Due to the rapid reduc-
tion in the number of encoder and decoder layers, the student’s
ability of acoustic feature representation and language model-
ing became poorer than teacher, so the student model had a rel-
ative drop of 19.5% and 20.3% in the attention and rescoring
decoding modes, respectively.

4.5. Effects of NFSD and AFSD

All the results were shown in Table 2. First, we verified the
NFSD method on the baseline student model. From the results
of T4, the NFSD method had greatly improved the performance
of the student model and even surpassed the PKD model (T6).
It argued that the deeper layers of the model itself had more ef-
ficient feature representation, which could be easily integrated
into shallower structures. In this case, we further proposed
the AFSD method to exploit more high-level information. T5
showed that the AFSD method achieved a more efficient per-
formance improvement than NFSD, achieving 6.0% and 8.3%
relative CER reduction in the attention and rescoring decoding
modes compared with the baseline student model (T3). Since
our proposed methods did not require an extra teacher model,
we also adopted them to the baseline teacher model. The re-
sults of T1 and T2 showed that our methods could greatly im-
prove the performance of the teacher model, and AFSD was
also more efficient than NFSD. In addition, the AFSD method
obtained 4.7% and 7.5% relative CER reduction in the atten-
tion and rescoring decoding modes compared with the baseline
teacher model (T0). This showed that more high-level informa-
tion is more effective for self-distillation.

4.6. Effects of NFSD-offline and AFSD-offline

We further verified the effectiveness of the combination of of-
fline distillation and self-distillation. In Table 2, T6 was our
baseline PKD model, which was obtained by distilling the base-
line teacher model (T0) with the PKD method [14]. T7 and T8

were the results of the NFSD-offline and AFSD-offline meth-
ods. Among them, the AFSD-offline method improved more
significantly, achieving 8.2% and 13.4% relative CER reduc-
tion compared with the baseline student model (T3) in the at-
tention and rescoring decoding modes. In addition, the AFSD-
offline method also achieved 4.7% and 7.4% relative CER re-
duction compared with the PKD model (T6) in the attention
and rescoring decoding modes. It was worth noting that the
AFSD-offline method only degraded 4.2% relative CER in the
rescoring decoding compared with the baseline teacher model
(T0), which was almost a lossless knowledge distillation. This
showed that high-level information could still be exploited from
self-distillation even when the feature representation is good
enough. It argued that finding efficient deep feature represen-
tations was necessary.

5. Conclusions and future work
In this paper, we proposed NFSD and AFSD self-distillation
methods to improve the performance of the ASR model. The
proposed methods solved the problem of less information uti-
lization of the model itself, and explored the potential of high-
level information for self-distillation. Our methods worked on
both large-scale teacher models and small-scale student models.
For the compressed student model, our proposed methods even
achieved better performance than the offline distillation PKD
method, without a large teacher model. In addition, both of our
methods only introduced an extra loss function during training
without increasing the amount of parameters. Furthermore, we
proposed NFSD-offline and AFSD-offline methods to further
improve the performance of the compressed student model, ba-
sically achieving lossless knowledge distillation with the com-
pression ratio of 3.37 times. The methods provided a possibility
for the combination of offline distillation and self-distillation.
In future work, we will improve the existing teacher-student
knowledge distillation methods to further improve the perfor-
mance of the combined AFSD-offline method.

6. Acknowledgements
This work was supported partially by the National Key RD Pro-
gram of China under Grant 2018YFB1305200, the National
Natural Science Foundation of China under Grant 62176182
and Alibaba Group through Alibaba Innovative Research Pro-
gram.



7. References
[1] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend

and spell: A neural network for large vocabulary conversational
speech recognition,” in 2016 IEEE international conference on
acoustics, speech and signal processing (ICASSP). IEEE, 2016,
pp. 4960–4964.

[2] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Con-
nectionist temporal classification: labelling unsegmented se-
quence data with recurrent neural networks,” in Proceedings of
the 23rd international conference on Machine learning, 2006, pp.
369–376.

[3] A. Graves, “Sequence transduction with recurrent neural net-
works,” arXiv preprint arXiv:1211.3711, 2012.

[4] R. Prabhavalkar, K. Rao, T. N. Sainath, B. Li, L. Johnson, and
N. Jaitly, “A comparison of sequence-to-sequence models for
speech recognition.” in Interspeech, 2017, pp. 939–943.

[5] E. Battenberg, J. Chen, R. Child, A. Coates, Y. G. Y. Li, H. Liu,
S. Satheesh, A. Sriram, and Z. Zhu, “Exploring neural trans-
ducers for end-to-end speech recognition,” in 2017 IEEE Auto-
matic Speech Recognition and Understanding Workshop (ASRU).
IEEE, 2017, pp. 206–213.

[6] C.-C. Chiu and C. Raffel, “Monotonic chunkwise attention,”
arXiv preprint arXiv:1712.05382, 2017.

[7] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos,
E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al.,
“Deep speech: Scaling up end-to-end speech recognition,” arXiv
preprint arXiv:1412.5567, 2014.

[8] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Bat-
tenberg, C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen
et al., “Deep speech 2: End-to-end speech recognition in english
and mandarin,” in International conference on machine learning.
PMLR, 2016, pp. 173–182.

[9] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in 2013 IEEE international
conference on acoustics, speech and signal processing. Ieee,
2013, pp. 6645–6649.

[10] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez,
D. Zhao, D. Rybach, A. Kannan, Y. Wu, R. Pang et al., “Stream-
ing end-to-end speech recognition for mobile devices,” in ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2019, pp. 6381–6385.

[11] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, attend and
spell,” arXiv preprint arXiv:1508.01211, 2015.

[12] B. Zhang, D. Wu, Z. Yao, X. Wang, F. Yu, C. Yang, L. Guo, Y. Hu,
L. Xie, and X. Lei, “Unified streaming and non-streaming two-
pass end-to-end model for speech recognition,” arXiv preprint
arXiv:2012.05481, 2020.

[13] N. Moritz, T. Hori, and J. Le Roux, “Triggered attention for end-
to-end speech recognition,” in ICASSP 2019-2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 5666–5670.

[14] S. Sun, Y. Cheng, Z. Gan, and J. Liu, “Patient knowl-
edge distillation for bert model compression,” arXiv preprint
arXiv:1908.09355, 2019.

[15] R. M. Mun’im, N. Inoue, and K. Shinoda, “Sequence-level
knowledge distillation for model compression of attention-based
sequence-to-sequence speech recognition,” in ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2019, pp. 6151–6155.

[16] G. Hinton, O. Vinyals, J. Dean et al., “Distilling the knowledge in
a neural network,” arXiv preprint arXiv:1503.02531, vol. 2, no. 7,
2015.

[17] M. Huang, Y. You, Z. Chen, Y. Qian, and K. Yu, “Knowledge
distillation for sequence model.” in Interspeech, 2018, pp. 3703–
3707.

[18] S. Panchapagesan, D. S. Park, C.-C. Chiu, Y. Shangguan,
Q. Liang, and A. Gruenstein, “Efficient knowledge distillation
for rnn-transducer models,” in ICASSP 2021-2021 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2021, pp. 5639–5643.

[19] R. Masumura, N. Makishima, M. Ihori, A. Takashima, T. Tanaka,
and S. Orihashi, “Hierarchical transformer-based large-context
end-to-end asr with large-context knowledge distillation,” in
ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 5879–
5883.

[20] T. Doutre, W. Han, M. Ma, Z. Lu, C.-C. Chiu, R. Pang,
A. Narayanan, A. Misra, Y. Zhang, and L. Cao, “Improv-
ing streaming automatic speech recognition with non-streaming
model distillation on unsupervised data,” in ICASSP 2021-2021
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2021, pp. 6558–6562.

[21] R. V. Swaminathan, B. King, G. P. Strimel, J. Droppo, and
A. Mouchtaris, “Codert: Distilling encoder representations
with co-learning for transducer-based speech recognition,” arXiv
preprint arXiv:2106.07734, 2021.

[22] V. Nagaraja, Y. Shi, G. Venkatesh, O. Kalinli, M. L. Seltzer,
and V. Chandra, “Collaborative training of acoustic encoders for
speech recognition,” arXiv preprint arXiv:2106.08960, 2021.

[23] J. Yu, W. Han, A. Gulati, C.-C. Chiu, B. Li, T. N. Sainath, Y. Wu,
and R. Pang, “Universal asr: Unify and improve streaming asr
with full-context modeling,” arXiv preprint arXiv:2010.06030,
2020.

[24] T. Moriya, T. Ochiai, S. Karita, H. Sato, T. Tanaka, T. Ashihara,
R. Masumura, Y. Shinohara, and M. Delcroix, “Self-distillation
for improving ctc-transformer-based asr systems.” in INTER-
SPEECH, 2020, pp. 546–550.

[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[26] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu et al., “Conformer: Convolution-
augmented transformer for speech recognition,” arXiv preprint
arXiv:2005.08100, 2020.

[27] S. Kim, T. Hori, and S. Watanabe, “Joint ctc-attention based
end-to-end speech recognition using multi-task learning,” in 2017
IEEE international conference on acoustics, speech and signal
processing (ICASSP). IEEE, 2017, pp. 4835–4839.

[28] H. Bu, J. Du, X. Na, B. Wu, and H. Zheng, “Aishell-1: An
open-source mandarin speech corpus and a speech recognition
baseline,” in 2017 20th Conference of the Oriental Chapter of
the International Coordinating Committee on Speech Databases
and Speech I/O Systems and Assessment (O-COCOSDA). IEEE,
2017, pp. 1–5.

[29] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “Specaugment: A simple data augmen-
tation method for automatic speech recognition,” arXiv preprint
arXiv:1904.08779, 2019.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[31] Z. Yao, D. Wu, X. Wang, B. Zhang, F. Yu, C. Yang, Z. Peng,
X. Chen, L. Xie, and X. Lei, “Wenet: Production oriented stream-
ing and non-streaming end-to-end speech recognition toolkit,”
arXiv preprint arXiv:2102.01547, 2021.


